Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A kẻ AM // BC (M ∈ RP )
Xét △QPC có AM // PC
\(\Rightarrow\frac{QC}{QA}=\frac{PC}{AM}\)(Hệ quả định lí Ta-lét) (1)
Xét △RBP có AM // BP
\(\Rightarrow\frac{RA}{RB}=\frac{AM}{BP}\)(Hệ quả định lí Ta-lét) (2)
Từ (1) và (2) suy ra :
\(\frac{BP}{PC}\cdot\frac{CQ}{QA}\cdot\frac{AR}{RB}=\frac{BP}{PC}\cdot\frac{PC}{AM}\cdot\frac{AM}{BP}=1\)(ĐPCM)
Kẻ CH song song MP và H thuộc AB
ta có
\(\hept{\begin{cases}\frac{NB}{NC}=\frac{MB}{MH}\\\frac{PC}{PA}=\frac{MH}{MA}\end{cases}\Rightarrow\frac{MA}{MB}.\frac{NB}{NC}.\frac{PC}{PA}=}\frac{MA}{MB}.\frac{MB}{MH}.\frac{MH}{MA}=1\)vậy ta có dpcm
hình mik ko vẽ đc xl!!!(GT+KL cx vậy)
a)Ta có AD//BN(NϵBC) => \(\frac{AM}{AB}=\frac{DM}{DN}\)(dl ta-lét) \(_1\)
Lại có BM//DC(MϵAB) => \(\frac{CB}{CN}=\frac{DM}{DN}\)(dl ta-lét) \(_2\)
từ 1 và 2 => \(\frac{AM}{AB}=\frac{DM}{DN}=\frac{CB}{CN}\left(đpcm\right)\)
b) ta có: AM//DC(MϵAB) => \(\frac{DI}{IM}=\frac{BC}{AM}=\frac{AB}{AM}\)(hệ quả ; BC=AB)
CMTT => \(\frac{IN}{DI}=\frac{NC}{DA}=\frac{NC}{CB}\)
VÌ \(\frac{NC}{CB}=\frac{AB}{AM}\left(cmt\right)\)
\(\Rightarrow\frac{IN}{ID}=\frac{ID}{IM}\Leftrightarrow ID^2=IN\cdot IM\left(đpcm\right)\)
câu b sai rồi nhé, DC/AM chứ không phải là BC/AM và DC=AB( 2 cạnh đối của HBH)