K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

(1) ta có : \(S_{\Delta ABC}=\dfrac{1}{2}.b.c.sinA=\dfrac{1}{2}.8.5.sin60^0=10\sqrt{3}\)

(2) ta có : \(a^2=b^2+c^2-2bc.cosA=8^2+5^2-2.8.5.cos60\)

\(\Leftrightarrow a^2=49\Leftrightarrow a=\sqrt{49}=7\)

ta có : \(S_{\Delta ABC}=\dfrac{abc}{4R}\Leftrightarrow10\sqrt{3}=\dfrac{7.8.5}{4R}\Leftrightarrow R=\dfrac{7.8.5}{4.10\sqrt{3}}=\dfrac{7\sqrt{3}}{3}\)

(3) ta có : \(p=\dfrac{7+8+5}{2}=10\)

ta có : \(S_{\Delta ABC}=p.r\Leftrightarrow10\sqrt{3}=10.r\Leftrightarrow r=\dfrac{10\sqrt{3}}{10}=\sqrt{3}\)

(4) ta có : \(S_{\Delta ABC}=\dfrac{1}{2}a.h_a\Leftrightarrow10\sqrt{3}=\dfrac{1}{2}.7.h_a\Leftrightarrow h_a=10\sqrt{3}.\dfrac{2}{7}=\dfrac{20\sqrt{3}}{7}\)

(5) ta có : \(\left(m_a\right)^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}=\dfrac{8^2+5^2}{2}-\dfrac{7^2}{4}=\dfrac{129}{4}\)

\(\Leftrightarrow m_a=\sqrt{\dfrac{129}{4}}=\dfrac{\sqrt{129}}{2}\)

29 tháng 11 2022

a: Xét ΔBAC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(\dfrac{a^2+AC^2-7a^2}{2\cdot a\cdot AC}=\dfrac{-1}{2}\)

=>\(2\left(AC^2-6a^2\right)=-2a\cdot AC\)

=>\(AC^2-6a^2=AC\cdot-a\)

=>\(AC^2+AC\cdot a-6a^2=0\)

=>AC^2+3*AC*a-2*AC*a-6a^2=0

=>AC(AC+3a)-2a(AC+3a)=0

=>AC=2a

Xét ΔBAC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}=\dfrac{a^2+7a^2-4a^2}{2\cdot a\cdot a\sqrt{7}}=\dfrac{2\sqrt{7}}{7}\)

nên góc B=41 độ

=>góc C=180-120-41=60-41=19 độ

b: \(m_A=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{a^2+4a^2}{2}-\dfrac{7a^2}{4}}=\dfrac{\sqrt{3}}{2}\cdot a\)

\(\dfrac{BC}{sinA}=2\cdot R\)

=>\(2\cdot R=\dfrac{a\sqrt{7}}{sin120}=a\sqrt{7}\cdot\dfrac{2}{\sqrt{3}}\)

=>\(R=a\sqrt{\dfrac{7}{3}}\)

a: b=8cm nên AC=8cm

c=5cm nên AB=5cm

Xét ΔABC vuông tại A có \(\tan C=\dfrac{5}{8}\)

nên \(\widehat{C}\simeq32^0\)

=>\(\widehat{B}=58^0\)

b: \(S_{ABC}=\dfrac{5\cdot8}{2}=20\left(cm^2\right)\)

c: \(h_A=\dfrac{5\cdot8}{\sqrt{5^2+8^2}}=40\dfrac{\sqrt{89}}{89}\left(cm\right)\)

5 tháng 5 2019

Nhận xét: Tam giác ABC có a2 + b2 = c2 nên vuông tại C.

Giải bài 10 trang 62 sgk Hình học 10 | Để học tốt Toán 10

+ Diện tích tam giác: S = 1/2.a.b = 1/2.12.16 = 96 (đvdt)

+ Chiều cao ha: ha = AC = b = 16.

+ Tâm đường tròn ngoại tiếp tam giác là trung điểm của AB.

Bán kính đường tròn ngoại tiếp R = AB /2 = c/2 = 10.

+ Bán kính đường tròn nội tiếp tam giác: S = p.r ⇒ r = S/p.

Mà S = 96, p = (a + b + c) / 2 = 24 ⇒ r = 4.

+ Đường trung tuyến ma:

ma2 = (2.(b2 + c2) – a2) / 4 = 292 ⇒ ma = √292.

NV
24 tháng 4 2019

\(a=\sqrt{b^2+c^2-2bc.cosA}=5\sqrt{37}\)

\(p=\frac{a+b+c}{2}=\frac{55+5\sqrt{37}}{2}\) \(\Rightarrow S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\approx303,1\)

\(\Rightarrow h_a=\frac{2S}{a}\approx20\)

\(R=\frac{abc}{4S}\approx17,5\)

\(r=\frac{S}{p}\approx7,1\)

28 tháng 1 2022

\(a^2=b^2+c^2-2bc.\cos A\Rightarrow a=\sqrt{b^2+c^2-2bc.cosA}=\sqrt{7^2+5^2-\dfrac{2.7.5.3}{5}}=4\sqrt{2}\)

\(\sin A=\sqrt{1-cos^2A}=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)

\(p=\dfrac{a+b+c}{2}=6+2\sqrt{2}\)

\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=14\)

\(R=\dfrac{a}{2.sinA}=\dfrac{4\sqrt{2}}{\dfrac{2.4}{5}}=\dfrac{5\sqrt{2}}{2}\)

\(r=\dfrac{S}{p}=\dfrac{14}{6+2\sqrt{2}}=3-\sqrt{2}\)

\(ha=\dfrac{2S}{a}=\dfrac{2.14}{4\sqrt{2}}=2\sqrt{2}\)

\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\)

\(\Leftrightarrow7^2+5^2-a^2=\dfrac{3}{5}\cdot2\cdot7\cdot5=3\cdot2\cdot7=42\)

\(\Leftrightarrow a^2=32\)

hay \(a=4\sqrt{2}\)

\(\sin A=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)