K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

Ta có:góc ABI= góc IBC(BI là tia phân giác của góc ABC)

Góc AIB=IBC=80*÷2=40*

Lại có:ACI=ICB=40*÷2=20*(vì CI là tia phân giác của ACB)

Xét tam giác BIC có:IBC+ICB+BIC=180*(tổng 3 góc của tam giác)

=>BIC=180*-(IBC+ICB)=180*-(40*+20*)=180*-60*=120*

5 tháng 11 2023

Ta có \(\widehat{I_1}=\widehat{A_1}+\widehat{B_1}\) và \(\widehat{I_2}=\widehat{A_2}+\widehat{C_1}\)

\(\Rightarrow\widehat{BIC}=\widehat{I_1}+\widehat{I_2}\)

\(=\left(\widehat{A_1}+\widehat{A_2}\right)+\left(\widehat{B_1}+\widehat{C_1}\right)\)

\(=\widehat{BAC}+\dfrac{\widehat{ABC}+\widehat{ACB}}{2}\)

\(=180^o-\left(\widehat{ABC}+\widehat{ACB}\right)+\dfrac{\widehat{ABC}+\widehat{ACB}}{2}\)

\(=180^o-\left(80^o+40^o\right)+\dfrac{80^o+40^o}{2}\)

\(=120^o\)

Vậy \(\widehat{BIC}=120^o\)

5 tháng 11 2023

B1: Cho tam giác ABC có B=80, C=40 độ. Tia phân giác của góc B cắt AC tại D. Tính ADB.

B2:  Cho ta giác ABC có B-C=20 độ. Đường phân giác AD của góc A cắt BC tại D. Tính ADB  và  ADC.

B3: Cho hình vẽ tính ACB

30 tháng 7 2015

Trong tam giác ABC có góc BAC + ABC + ACB = 180 độ

\(\Rightarrow\) góc ABC + góc ACB = 180 độ - góc BAC = 180 độ - 60 độ = 120 (độ)

Ta có góc IBC + góc ICB = góc ABC/2 + góc ACB/2 = (góc ABC + góc ACB)/2 = 120 độ/2 = 60 (độ)

Trong tam giác IBC có góc BIC + góc IBC + góc ICB = 180 độ

\(\Rightarrow\) góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ

30 tháng 7 2015

BÀi này à 

22 tháng 12 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có:

+ Trong ΔBIC có ∠BIC = 180o - (∠B1 + ∠C1) (1)

+ BI, CI là phân giác của ∠ABC và ∠BCA nên:

∠B1 = 1/2. ∠ABC; ∠C1 = 1/2. ∠ACB

⇒ ∠B1 + ∠C1 = 1/2. (∠ABC + ∠ACB) (2)

⇒ ∠ABC + ∠ACB = 180 - ∠A (3).

Từ (1), (2) và (3) suy ra ∠BIC = 180o - 1/2.(180 - ∠A) = 90o + 1/2.∠A

+) Nếu ∠A = 80o ⇒ ∠BIC = 90º + 1/2.80o = 130o.

+) Nếu ∠A = mo ⇒ ∠BIC = 90o + 1/2.mo.

Cái này bạn đổi điểm K thành điểm M là xong nha

Kẻ IG,IK,IH lần lượt vuông góc với AB,BC,AC

Kẻ MO,MD,ME lần lượt vuông góc với AB,BC,AC

Xét ΔBKI vuông tại K và ΔBGI vuông tại G có

BI chung

góc KBI=góc GBI

Do đó: ΔBKI=ΔBGI

Suy ra: IK=IG(1)

Xét ΔCKI vuông tại K và ΔCHI vuông tại H có

CI chung

góc KCI=góc HCI

Do dó: ΔCKI=ΔCHI

Suy ra: IK=IH(2)

Từ (1) và (2) suy ra IG=IH

mà I nằm trong ΔABC và IG,IH là các đường cao ứng với các cạnh AB,AC

nên AI là phân giác của góc BAC(3)

Xét ΔBOM vuông tại O và ΔBDM vuông tại D có

BM chung

góc OBM=góc DBM

Do đó: ΔBOM=ΔBDM

Suy ra: MO=MD(4)

Xét ΔMDC vuông tại D và ΔMEC vuông tại E có

CM chung

góc DCM=góc ECM

Do đó: ΔMDC=ΔMEC

Suy ra: MD=ME(5)

Từ (4) và (5) suy ra MO=ME

mà M nằm ngoài ΔABC và MO,ME là các đường cao ứng với các cạnh AB,AC

nên AM là phân giác của góc BAC(6)

Từ (3) và (6) suy ra A,I,M thẳng hàng