\(\widehat{A}\)= 90 độ, AH vuông góc với BC(H thuộc BC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải :

a) Xét \(\Delta HBA\)và \(\Delta ABC\)có :

\(\widehat{BHA}=\widehat{BAC}=90^o\)

\(\widehat{B}\)chung

\(\Rightarrow\Delta HBA~\Delta ABC\left(g.g\right)\)

phần B đề sai sửa đề AH2 = HB . HC 

Áp dụng hệ thức cạnh trong \(\Delta\)vuông ta có :

\(AH^2=HB.HC\)( đpcm )

17 tháng 8 2019

chuyên toán thcsLớp 8 chưa học các HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG phải đi c.m chứ

10 tháng 7 2019

ai đó giúp mình giải bài này với

10 tháng 7 2019

a

Xét  \(\Delta EBH\) và \(\Delta DHC\) có:

\(\widehat{EHB}=\widehat{DHC}\left(đ.đ\right)\)

\(\widehat{E}=\widehat{D}=90^0\)

\(\Rightarrow\Delta EBH~\Delta DHC\left(g.g\right)\)

b

\(\frac{S_{ABF}}{S_{ACF}}=\frac{\frac{AF\cdot BF}{2}}{\frac{AF\cdot CF}{2}}=\frac{BF}{CF}\)

Tuong tu ta co:

\(\frac{S_{ABD}}{S_{CBD}}=\frac{DA}{DC}\)

\(\frac{S_{BCE}}{S_{ACE}}=\frac{EB}{EA}\)

Nhan ve theo ve ta co dpcm

16 tháng 4 2020

Giải:

27 tháng 3 2019

Hình bạn tự vẽ nhé

a) Xét tam giác ABD và tam giác ACE ta có: 

\(\hept{\begin{cases}\widehat{BAC}-chung\\\widehat{BDA}=\widehat{CEA}=90^o\end{cases}}\Rightarrow\Delta ABD~\Delta ACE\left(g.g\right)\)

b) H là giao điểm của BD và CE suy ra H là trực tâm của tam giác ABC

=> AH là đường cao thứ 3 của tam giác ABC => \(AH\perp BC\)

Xét \(\Delta CEB\) và \(\Delta CKH\) ta có:

\(\hept{\begin{cases}\widehat{CEB}=\widehat{CKH}=90^o\\\widehat{ECB}-chung\end{cases}}\Rightarrow\Delta CEB~\Delta CKH\left(g.g\right)\Rightarrow\frac{CE}{CK}=\frac{BC}{CH}\Rightarrow CE.CH=BC.CK\)(1)

c) Ta có: Xét \(\Delta BKH\) và \(\Delta BDC\) ta có:

\(\hept{\begin{cases}\widehat{DBC}-chung\\\widehat{HKB}=\widehat{BDC}=90^o\end{cases}}\Rightarrow\frac{BK}{BD}=\frac{BH}{BC}\Rightarrow BK.BC=BH.BD\)(2)

Cộng theo vế của (1) và (2):

\(BH.BD+CH.CE=BC\left(CK+BK\right)=BC^2\left(đpcm\right)\)

sử dụng đồng dạng và các câu sau có thể dựa vào các câu trc thay vào và chứng minh nha