Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) A=D=E=90 độ
=>AEHD là hcn
=>AH=DE
b)Xét tam giác DBH vuông tại D có:
DI là đường trung tuyến ứng với cạnh huyền BH
=>DI=BH/2=IH
=>tam giác IDH cân tại I
=>góc IDH=góc IHD (1)
Gọi O là gđ 2 đường chéo AH và DE
=>OD=OA=OE=OH (tự c/m)
=> tam giác DOH cân tại O
=> góc ODH=góc OHD(2)
từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)
=>IDvuông góc DE(3)
Cmtt ta được: KEvuông góc DE(4)
Từ (3)và (4) => DI//KE.
2a) Ta có góc HAB+góc HAC=90 độ (1)
Xét tam giác ABC vuông tại A có
AM là đg trung tuyến ứng vs cạnh huyền BC
=>AM=MC
=>tam giác AMC cân
=>góc MAC=góc ACM
Lại có: góc HAC+góc ACH=90 độ(2)
Từ (1) và (2) => góc BAH=góc ACM
Mà góc AMC=góc MAC(cmt)
=>ABH=MAC(3)
b)A=D=E=90 độ
=>AFHE là hcn
Gọi O là gđ EF và AM
OA=OF(tự cm đi nha)
=>tam giác OAF cân
=>OAF=OFA(4)
Ta có : OAF+MCA=90 độ(5)
Từ (3)(4) và (5)
=>MAC+OFA=90 độ
Hay AM vuông góc EF
k giùm mình nha.
A B C H I K
+) Xét tam giác AHC có: I; K là trung điểm của CH; AH => IK là đường trung bình của tam giác AHC
=> AC // IK mà AC | AB nên AB | IK
+) Xét tam giác AIB có: 2 đường cao AH; IK cắt nhau tại K => K là trực tâm => BK là đường cao thứ ba
=> BK | AI
Ta có: lấy N là trung điểm của EC ta có: Xét tam giác EHC có I là trung điểm EC
O là trung điểm EH
=> OI là đường turng bình của tam giác EHC => OI//HC mà HC vuông góc AH => OI vuông góc AH
Xét tam giác AHI có EH vuông góc AI
IO vuông góc AH
=> AO là trường cao của tam giác AHI => AO vuông góc HI
Xét tam giác BEC có H là trung điểm BC; I là trung điểm EC => HI là đường trung bình
=> HI//BE mà HI vuông góc AO => BE cũng vuông góc AO
Ta có : Lấy N là trung điểm của EC ta có : Xét tam giác EHC có I là trung điểm EC
O là trung điểm của EH
suy ra OI là đường trung bình của tam giác EHC suy ra OI // HC mà HC vuông góc Ah suy ra OI vuông góc vói Ah
Xét tam giác AHI có EH vuông góc AI
IO vuông góc với AH
suy ra AO là đường cao của tam giác AHI suy ra AO vuông góc HI
Xét tam giác BEC có H là trung điểm BC , I là trung điểm EC suy ra HI là đường trung bình
suy ra HI // BE mà HI vuông góc AO suy ra BE vuông góc với AO
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE