Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
b: Ta có: AEMF là hình chữ nhật
nên AM=EF
mà AM=BC/2
nên EF=BC/2
Kẻ CK vuông góc với đường thằng FM.
Tứ giác HCKF có 3 góc vuông nên nó là hình chữ nhật.
Xét ∆FMB và ∆KMC:
\(\widehat{BFM}=\widehat{CKM}=90^o\)
\(\widehat{FMB}=\widehat{KMC}\) (2 góc đối đỉnh)
=> ∆FMB~∆KMC (g.g)
=> \(\widehat{FBM}=\widehat{KCM}\)
Xét ∆ECM và ∆KCM:
MC: cạnh chung
\(\widehat{ECM}=\widehat{KCM}\left(=\widehat{FBM}\right)\)
\(\widehat{CEM}=\widehat{CKM}=90^o\)
=> ∆ECM=∆KCM (ch.gn)
=> ME=MK (2 cạnh tương ứng)
Ta có: MF+ME=MF+MK=FK
Mà HCKF là hình chữ nhật(cmt) nên FK=CH
=> MF+ME=CH
Vì ∆ABC không đổi nên CH không đổi, từ đó suy ra tổng MF+ME không đổi khi M di chuyển trên BC.
Câu c có khá nhiều cách giải,nhưng mình trình bày 1 cách thôi nhá :)
Câu c là lấy H đối xừng với B qua M,Kẻ đường thẳng song song với AE vắt EM,AF lần lượt tại V và W ạ