K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

viết rõ đề tí đi bạn

4 tháng 1 2017

Cho tam giác ABC vuông tại C.AD và BE lần lượt là tia phân giác của góc A, góc B. Trên cạnh AB lấy 2 diểm M,N sao cho EN và DM vuông góc với AB . Tính số đo góc NCM?

5 tháng 3 2020

Bạn ơi t nghĩ là k vào đc đâu bn ạ

Nếu bn ghi rõ đề ra thì chắc ..........

7 tháng 3 2020

A B C N M I D E J

a)  +) Xét \(\Delta\)ABC cân tại A

=> AB = AC và  \(\widehat{ABC}=\widehat{ACB}\)  ( tính chất tam giác cân )

+) Mà \(\widehat{ACB}=\widehat{NCE}\)  ( 2 góc đối đỉnh )

 => \(\widehat{ABC}=\widehat{NCE}\)

+) Xét \(\Delta\) BDM vuông tại M  và \(\Delta\)CEN vuông tại N có

BD = CE  (gt)

\(\widehat{ABC}=\widehat{NCE}\)  ( cmt) 

=> \(\Delta\)BDM = \(\Delta\)CEN   ( ch-gn) 

b) +) Xét \(\Delta\) ABC vuông tại A

=> \(BC^2=AB^2+AC^2\)  ( định lí Py-ta-go)

=> \(BC^2=2.AB^2\)

=> \(BC^2=2.4^2=2.16=32\)

\(\Rightarrow BC=\sqrt{32}\)  ( cm)   ( do BC > 0 )

Vậy 

Từ ^2

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

11 tháng 4 2020

không biết

10 tháng 2 2022

cứt

 

30 tháng 12 2021

Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.

a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)

Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)

30 tháng 12 2021

b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K

Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:

\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)

Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)

\(\Rightarrow AK\perp BI\)tại H

2 tháng 7 2017

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Ta có: ΔABC=ΔADE

nên BC=DE(1)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=BC/2(2)

Ta có: ΔADE vuông tại A

mà AN là đường trung tuyến

nên AN=DE/2(3)

Từ (1), (2) và (3) suy ra AM=AN