K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2020

Xét tam giác BAC vuông tại B (gt)

=> \(\widehat{B}=90\)

Vì tổng số đo của 1 tam giác là 180 độ nên 

\(\Rightarrow\widehat{C}=180-\widehat{B}-\widehat{A}=180-90-34=56\)

Vậy góc C= 56 độ

a: Xét ΔABD vuông tại D và ΔACD vuông tại C có

AB=AC

AD chung

Do đó: ΔABD=ΔACD

=>DB=DC

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(ΔABD=ΔACD)

Do đó: ΔAED=ΔAFD

=>AE=AF

=>ΔAEF cân tại A

 

23 tháng 3 2022

B

23 tháng 3 2022

B

7 tháng 12 2016

Bài 1:

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(ĐL tổng 3 góc 1 \(\Delta\))

\(\Rightarrow30^o+70^o+\widehat{C}=180^o\) (Vì \(\widehat{A}=30^o;\widehat{B}=70^o\) (gt))

\(\Rightarrow\widehat{C}=180^o-30^o-70^o=80^o\)

Bài 2:

Xét \(\Delta ABC\) (vuông tại A) có:

\(\widehat{B}+\widehat{C}=90^o\) (Tc \(\Delta\) vuông)

\(\Rightarrow\widehat{B}+40^o=90^o\) (Vì \(\widehat{C}=40^o\) (gt))

\(\Rightarrow\widehat{B}=90^o-40^o=50^o\)

7 tháng 12 2016

Giải:

+) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( 3 góc của tam giác )

\(\Rightarrow30^o+70^o+\widehat{C}=180^o\)

\(\Rightarrow\widehat{C}=80^o\)

Vậy...

+) Ta có: \(\widehat{B}+\widehat{C}=90^o\) ( do tam giác có \(\widehat{A}=90^o\) )

\(\Rightarrow40^o+\widehat{B}=90^o\)

\(\Rightarrow\widehat{B}=50^o\)

Vậy...

30 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

Vậy: \(\widehat{BED}=90^0\)

c) Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(hai cạnh tương ứng)

hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

hay BD⊥AE(đpcm)

30 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

ˆABD=ˆEBDABD^=EBD^(BD là tia phân giác của ˆABEABE^)

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên ˆBAD=ˆBEDBAD^=BED^(hai góc tương ứng)

mà ˆBAD=900BAD^=900(ΔABC vuông tại A)

nên ˆBED=900BED^=900

Vậy: ˆBED=900BED^=900

c) Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(hai cạnh tương ứng)

hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

hay BD⊥AE(đpcm)