K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

Hình dễ tự vẽ nhé bạn 

a ) Do \(DH\perp AC\Rightarrow\widehat{AHD}=90^o\)

Xét \(\Delta ABD\) và \(\Delta AHD\) có :
\(\widehat{BAD}=\widehat{HAD}\) ( AD là tia p/g )

AD là cạnh chung

\(\widehat{ABD}=\widehat{AHD}\left(=90^o\right)\)

nên \(\Delta ABD=\Delta AHD\left(g.c.g\right)\)

b ) Gọi K là giao điểm của BH và AD 

Xét \(\Delta BAK\)và \(\Delta HAK\) có :

AB = AH ( do \(\Delta ABD=\Delta AHD\))

\(\widehat{BAK}=\widehat{HAK}\) ( AD là tia p/g )

AK là cạnh chung

nên \(\Delta BAK=\Delta HAK\left(c.g.c\right)\)

=> BK = HK  ( 1 )

=> \(\widehat{AKB}+\widehat{AKH}=180^o\) ( hai góc kề bù )
     \(\widehat{AKB}+\widehat{AKB}=180^o\)

    \(\widehat{AKB}.2=180^o\)

\(\Rightarrow\widehat{AKB}=\frac{180^o}{2}=90^o\) ( 2 )

Từ ( 1 ) và ( 2 ) => AD là đường trung trực của BH 

c ) Xét \(\Delta BDI\) và \(\Delta HDC\) có :

\(\widehat{DBI}=\widehat{DHC}\left(=90^o\right)\)

BD = HD ( do \(\Delta ABD=\Delta AHD\) )

\(\widehat{BDI}=\widehat{HDC}\) ( hai góc đối đỉnh )

nên \(\Delta BDI=\Delta HDC\left(g.c.g\right)\)

=> DI = DC

=> \(\Delta DIC\)cân tại D

e ) Gọi M là điểm AD cắt IC

Ta có : 

AI = AB + BI 

AC = AH + HC 

mà AB = AH ( \(\Delta ABD=\Delta AHD\))

      BI = HC ( \(\Delta BDI=\Delta HDC\) )

=> AI = AC 

=> \(\Delta AIC\) cân tại A 

Lại có : \(CB\perp AI\)=> CB là đường cao ứng với cạnh AI

             \(IH\perp AC\)=> IH là đường cao ứng với cạnh AC

=> AM là đường cao thứ ba ( hay AD )

=> AM \(\perp\)IC

=> \(AD\perp IC\)

Tớ bổ sung ý d) cho Đường Tịch nè:

Ta có : tam giác DIC cân tại D 

=> ID = DC

Mà BD = HD (cmt)

=> BD = HD

Mà ta có BC = BD + DC

IH = ID + DH

=> BC = IH 

Xét tam giác vuông HIC và tam giác vuông BCI ta có : 

BC = IH 

IC chung

IBC = CHI = 90 độ

=> Tam giác HIC = tam giác BCI ( g.c.g) 

=> BI = HC (tg ứng)

Xét tam giác AKB và tam giác AKH ta có 

=> BAD = HAD ( AD là pg)

AK chung

AKB = AKH = 90 độ

=> Tam giác AKB = tam giác AKH (g.c.g)

=> AB =  AK 

Mà AI = AK + BI

AC = AH + HC 

=> AI = AC 

=> AIC cân tại A 

=> AIC = ACI 

Ta có AIC = ACI = 180 - A

Ta có AK = AH (cmt)

=> Tam giác BAH cân tại B 

=> ABH = AHB 

=> ABH = AHB = 180 - A

=> ABH = AHB = AIC = ACI ( cùng bằng 180 - A)

=> ABH = AIC 

Mà 2 góc này ở vị trí đồng vị

=> BH //IC

=> (dpcm)

a: Xet ΔABD vuông tại A và ΔAHD vuông tại H có

AD chung

góc BAD=góc HAD

=>ΔABD=ΔAHD

c: Xét ΔDBI vuông tại B và ΔDHC vuông tại H có

DB=DH

góc BDI=góc HDC

=>ΔBDI=ΔHDC

=>DI=DC và BI=HCC

d: Xét ΔAIC có AB/BI=AH/HC

nên BH//IC

g: BC+AB>AC

=>BC+2AB>AC+AB

mà AB<AD<AC

nên BC>AC+AD-2AB

12 tháng 4 2019

Hình (tự vẽ)

Xét hai tam giác vuông ABD và AHD có:

\(\widehat{BAD}=\widehat{HAD}\)(AD là phân giác)

AD: cạnh chung

Do đó: ΔABD = ΔAHD (cạnh huyền - góc nhọn)

⇒ BD = DH (cạnh tương ứng)

Xét hai tam giác vuông BID và HCD có:

BD = HD (cmt)

\(\widehat{BID}=\widehat{HCD}\)(đối đỉnh)

Do đó: ΔBID = ΔHCD (cạnh góc vuông - góc nhọn kề)

⇒ DI = DC (hai cạnh tương ứng)

⇒ DIC cân tại D.

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
30 tháng 4 2016

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
 

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

5

Bạn tự vẽ hình nha!!!

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

30 tháng 4 2016

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.