Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C A E 1 2
a) Xét tam giác vuông ABC
Có \(AC=2AB\Rightarrow\widehat{BCA}=\frac{1}{2}\widehat{BAC}\)
Mà \(\widehat{A_1}=\widehat{A_2}=\frac{1}{2}\widehat{BAC}\) (AE là phân giác của góc A)
\(\Rightarrow\widehat{A_2}=\widehat{BCA}\)
\(\Rightarrow EA=EC\)
b) Ta có: \(\widehat{BAC}+\widehat{BCA}=90^0\) (vì \(\Delta ABC\) vuông tại B)
Mà \(\widehat{A_2}=\widehat{BCA}=\frac{1}{2}\widehat{BAC}\)
\(\Rightarrow\widehat{BCA}=\frac{1}{3}\left(\widehat{BAC}+\widehat{BCA}\right)=\frac{1}{3}.90^0=30^0\)
\(\Rightarrow\widehat{BAC}=90^0-30^0=60^0\)
Vậy ......
Đây là bài làm của mình : ( ko có hình vì mk ko biết vẽ hình )
Gọi D là trung điểm của AC
=> AD = DC = AB
Xét tam giác ABE và tam giác ADE , có :
AB = AD
A1 = A2
AE chung
=> tam giác ABE = tam giác ADE ( c.g.c )
=> BE = ED => góc ABF = góc ADE = 90o ( 2 góc tương ứng )
=> góc ADE = góc CDE
Xét tam giác ADE và tam giác CDE ta có :
AD = DC
góc ADE = góc CDE
DE chung
=> tam giác ADE = tam giác CDE
=> AE = EC
b, Vì tam giác AED = tam giác CED
=> A2 = C ( 2 góc tương ứng )
=> góc C = \(\frac{1}{2}\)góc A
=> A + C = 90o
Vì C = \(\frac{1}{2}\)A = > A = 60o
C = 30o
a) Gọi K là trung điểm của AC => AK = KC = AC/2 = AB
Nối EK
Xét t/g EAK và t/g EAB có:
AK = AB (cmt)
EAK = EAB ( vì AE là phân giác KAB)
EA là cạnh chung
Do đó, t/g EAK = t/g EAB (c.g.c)
=> EKA = EBA = 90o (2 góc tương ứng)
Xét t/g EKC vuông tại K và t/g EKA vuông tại K có:
EK là cạnh chung
KC = KA ( cách vẽ)
Do đó, t/g EKC = t/g EKA (2 cạnh góc vuông)
=> EC = EA (2 cạnh tương ứng) (đpcm)
b) t/g EKC = t/g EKA (câu a)
=> ECK = EAK (2 góc tương ứng)
= KAB/2
Tam giác CBA vuông tại B có: BCA + BAC = 90o
=> BCA + 2.BCA= 90o
=> 3.BCA = 90o
=> BCA = 90o : 3 = 30o
BAC = 90o - 30o = 60o
Bài 1:
K D A H E B M C
a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A
=> đường trung tuyến AM đồng thời là đường cao
Vậy AM vuông góc BC
c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)
\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)
d) Ta có KB//AM(vì vuông góc với BM
\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)
Xét tam giác KDB và MDA (2 góc đối đỉnh)
\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)
\(\Rightarrow KD=DM\left(1\right)\)
Tam giác ABM vuông tại M có trung tuyến MD
Nên : MD=BD=AD(2)
Từ (1) và (2) ta có : KD=DM=DB=AD
Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)
Nên : Tam giác KAM vuông tại A
Tương tự : Tam giác MAH vuông tại A
Ta có: Qua1 điểm A thuộc AM có 2 đường KA và AH cùng vuông góc với AM
Nên : K,A,H thẳng thàng
Bài 2 :
x D A B C E y
a) Ta có tam giác DAB=tam giác CEB(c.g.c)
Do : DA=CB(gt)
BE=BA(gt)
\(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))
=> DA=EC
b) Do tam giác DAB=tam giác CEB(ở câu a)
=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)
Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC)
=> \(\widehat{BCE}+\widehat{BCD}=90^0\)
=> DA vuông góc với EC
A)Ta có:
AC=2AB, góc ABC=90
=>Góc BCA=1/2 góc CAB
=>góc CAE= góc ECA
=> CEA là tam giác cân tại E <=> AE=AC
B) góc BCA=1/3 góc ABC=30
=> góc CAB=60