Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AB=CD và AB//CD
b: Sửa đề: AB<AC
AB=CD
=>CD<AC
=>góc CAD<góc CDA
=>góc CAD<góc BAD
c: góc AMB=góc MAC+góc ACB
góc AMC=góc MAB+góc ABC
mà góc MAC<góc MAB và góc ACB<góc ABC
nên góc AMB<góc AMC
a, Có: AM là trung tuyến ΔABC
\(\Rightarrow\) M là trung điểm BC
\(\Rightarrow MB=MC\)
Xét ΔABM và ΔCDM có:
\(MB=MC\left(cmt\right)\)
\(\widehat{AMB}=\widehat{CMD}\left(đ^2\right)\)
\(MA=MD\)
\(\Rightarrow\) ΔABM = ΔCDM ( c.g.c )
\(\Rightarrow\widehat{BAM}=\widehat{DCM}\left(2gtu\right)\)
\(\Rightarrow AB//CD\)
Mà \(BA⊥AC\)
\(\Rightarrow DC⊥AC\)
b, Có: ΔABM = ΔCDM ( cmt )
\(\Rightarrow\left\{{}\begin{matrix}BA=DC\left(2ctu\right)\\\widehat{ABM}=\widehat{CDM}\left(2gtu\right)\end{matrix}\right.\)
Xét ΔABC và ΔCDA có:
\(\widehat{ABM}=\widehat{CDM}\left(cmt\right)\)
\(AB=CD\left(cmt\right)\)
\(\widehat{BAC}=\widehat{DCA}\left(=90^o\right)\)
\(\Rightarrow\) ΔABC = ΔCDA ( g.c.g )
\(\Rightarrow BC=DA\left(2ctu\right)\)
Có: M là trung điểm BC
M là trung điểm AD ( MA = MD )
Mà \(BC=AD\)
\(\Rightarrow MA=MB\)
\(\Rightarrow\) ΔABM cân tại M
Mà \(\widehat{ABM=60^o}\)
\(\Rightarrow\) ΔABM là tam giác đều.
a: Xét ΔAMD và ΔAMC có
AM chung
MD=MC
AD=AC
Do đó: ΔAMD=ΔAMC
b: Xét ΔNDC có
NM là đường cao
NM là đường trung tuyến
Do đó:ΔNDC cân tại N
hay ND=NC
a) tam giác MAC = tam giác BAD theo trường hợp cạnh góc cạnh
Có: MC = MB (AM trung tuyến)
AMC = DMB (2 góc đối đỉnh)
MA = MD (theo giả thiết)
=> 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh
b)
Tam giác ABC có góc A=90 độ
Suy ra: góc ACB+ góc CBA= 90 độ
Mà : góc ACB (hay góc ACM) = DBM (2 tam giác bằng nhau, chứng minh trên)
Suy ra: góc DBM + CBA = 90 độ
Hay DBA=90 độ
a: Xét ΔMAB và ΔMCD có
MA=MC
MB=MD
AB=CD
=>ΔMAB=ΔMCD
b: Xét ΔMAC có MA=MC nên ΔMAC cân tại M
ΔMAB=ΔMCD
=>góc MAB=góc MCD
=>góc MAB=góc MAC
=>AM là phân giác của góc BAC
a) Xét ΔAMB và ΔNMC có
MA=MN(gt)
\(\widehat{AMB}=\widehat{NMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔNMC(c-g-c)
b) Ta có: ΔAMB=ΔNMC(cmt)
nên \(\widehat{ABM}=\widehat{NCM}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{BCN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//NC(Dấu hiệu nhận biết hai đường thẳng song song)
mà CD⊥AB(gt)
nên CD⊥CN
hay \(\widehat{DCN}=90^0\)
c) Xét ΔABH vuông tại H và ΔIBH vuông tại H có
BH chung
HA=HI(gt)
Do đó: ΔABH=ΔIBH(hai cạnh góc vuông)
Suy ra: AB=IB(hai cạnh tương ứng)
mà AB=CN(ΔAMB=ΔNMC)
nên IB=CN(đpcm)
1)A)XÉT \(\Delta ABM\)VÀ\(\Delta DCM\)CÓ
\(BM=CM\left(GT\right)\)
\(\widehat{M_1}=\widehat{M_2}\left(Đ/Đ\right)\)
\(AM=DM\left(GT\right)\)
\(\Rightarrow\Delta ABM=\Delta DCM\left(C-G-C\right)\)
\(\Rightarrow AB=CD\)(HAI CẠNH TƯƠNG ỨNG)(1)
TA CÓ XÉT \(\Delta ABC\)VUÔNG TẠI B
\(\Rightarrow\widehat{B}>\widehat{C};\widehat{B}>\widehat{A}\)
VÌ\(\widehat{B}>\widehat{C}\)
\(\Rightarrow AB< AC\)QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN(2)
TỪ (1) VÀ (2) => \(AC>CD\)
B) CÂU B QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN
b) XÉT \(\Delta ADC\)
CÓ \(DC< AC\left(CMT\right)\)
\(\Rightarrow\widehat{ADC}>\widehat{DAC}\left(1\right)\)QUA HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN
MÀ \(\Delta ABM=\Delta DCM\left(CMT\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{MDC}\)
HAY\(\widehat{BAM}=\widehat{ADC}\left(2\right)\)
TỪ (1) VÀ (2) \(\Rightarrow\widehat{BMA}>\widehat{MAC}\)