K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

b nhé anh :))))))))))))))))))))))))))))))

24 tháng 10 2021

B

24 tháng 11 2021

Xét \(\Delta ABC\)có \(\hept{\begin{cases}BC^2=5^2=25\\AB^2+AC^2=3^2+4^2=9+16=25\end{cases}}\Rightarrow BC^2=AB^2+AC^2\Rightarrow\Delta ABC\)vuông tại A (định lý Pytago đảo)

\(\Delta ABC\)vuông tại A có trung tuyến AM (M là trung điểm BC) \(\Rightarrow AM=\frac{BC}{2}=\frac{5}{2}=2,5\left(cm\right)\)

24 tháng 12 2021

a: \(S=\dfrac{AB\cdot AC}{2}=6\left(cm^2\right)\)

DD
11 tháng 1 2023

a) \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\) (theo định lí Pythagore trong tam giác \(ABC\) vuông tại \(A\))

\(AI=\dfrac{1}{2}BC=2,5\left(cm\right)\).

b) Tứ giác \(ABMC\) có hai đường chéo \(AM,BC\) cắt nhau tại trung điểm mỗi đường nên \(ABMC\) là hình bình hành. 

Mà có \(\widehat{BAC}=90^o\) do đó \(ABMC\) là hình chữ nhật. 

c) Tứ giác \(AMCD\) có \(AD=AB=AM,AD//CM\) suy ra \(AMCD\) là hình bình hành. 

d) Gọi \(K\) là giao điểm của \(DM\) và \(AC\).

Do \(AMCD\) là hình bình hành nên hai đường chéo \(DM,AC\) cắt nhau tại trung điểm \(K\) của mỗi đường.

Xét tam giác \(ACM\): hai đường trung tuyến \(CI,MK\) cắt nhau tại \(G\) nên \(G\) là trọng tâm tam giác \(ACM\) suy ra \(MG=\dfrac{2}{3}MK=\dfrac{2}{3}.\dfrac{1}{2}MD=\dfrac{1}{3}MD\)

\(\Leftrightarrow DM=3GM\).