Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC vuông tại A, đường cao AH
Theo định lí Pytago ta có : \(BC^2=AB^2+AC^2\Rightarrow14884=\left(\frac{5}{6}AC\right)^2+AC^2\)
\(\Leftrightarrow14884=\frac{25AC^2}{36}+AC^2=\frac{61}{36}AC^2\Rightarrow AC^2=14884:\frac{61}{36}=8784\Rightarrow AC=12\sqrt{61}\)cm
\(\Rightarrow AB=\frac{5.12\sqrt{61}}{6}=10\sqrt{61}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=50\)cm
b, Vì BI là đường phân giác => \(\frac{AB}{BC}=\frac{AI}{CI}\Rightarrow\frac{CI}{BC}=\frac{AI}{AB}\)
Theo tc dãy tỉ số bằng nhau \(\frac{CI}{BC}=\frac{AI}{AB}=\frac{AC}{BC+AB}=\frac{12\sqrt{61}}{122+10\sqrt{61}}\)
\(\Rightarrow CI=\frac{12\sqrt{61}}{122+10\sqrt{61}}BC=\frac{1464\sqrt{61}}{122+10\sqrt{61}}\)cm
\(\Rightarrow IA=\frac{12\sqrt{61}}{122+10\sqrt{61}}AB=\frac{7320}{122+10\sqrt{61}}\)cm
Theo định lí Pytago tam giác AIB vuông tại A
\(BI^2=AB^2+AI^2\Rightarrow BI=\sqrt{AB^2+AI^2}\)
\(=\sqrt{6100+\left(\frac{7320}{122+10\sqrt{61}}\right)^2}\)cm
a) đặt AB=x=>AC=2x
áp dụng định lý Pitago zô tam giác zuông ABC
\(AB^2+AC^2=BC^2=>x^2+4x^2=25\)
\(=>5x^2=25=>x^2=5\)
=>\(x=\sqrt{5}\)
\(=>AB=\sqrt{5};AC=2\sqrt{5}\)
b) Ta có \(AH//CD\)( từ zuông góc đến song song )
=> AHCD là hình thang
Áp dụng HTL ta có
\(AH=\frac{AB.AC}{BC}=\frac{\sqrt{5}.2\sqrt{5}}{5}=2=>AI=\frac{1}{3}AH=\frac{1}{3}=>HI=\frac{2}{3}\)
Áp dụng đinh lý ta lét
\(\frac{HI}{CD}=\frac{BH}{BC}=\frac{\frac{AB^2}{BC}}{BC}=\frac{AB^2}{BC^2}=\frac{5}{25}=\frac{1}{5}=>CD=5HI=10\)
Ta có \(HC=\frac{AC^2}{BC}=\frac{\left(2\sqrt{5}\right)^2}{5^2}=\frac{4}{5}\)
zậy
\(S_{AHCD}=\frac{1}{2}\left(AH+CD\right).HC=\frac{1}{2}\left(2+10\right).\frac{4}{5}=\frac{25}{4}\)
a:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(CA^2=BA^2+BC^2\)
\(\Leftrightarrow CA^2=10^2+12^2=244\)
hay \(CA=2\sqrt{61}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BI là đường cao ứng với cạnh huyền AC, ta được:
\(\left\{{}\begin{matrix}\dfrac{1}{BI^2}=\dfrac{1}{BA^2}+\dfrac{1}{BC^2}\\BA^2=AI\cdot CA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BI=\dfrac{60\sqrt{61}}{61}\left(cm\right)\\AI=\dfrac{50\sqrt{61}}{61}\left(cm\right)\end{matrix}\right.\)