K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4

Giúp mk vs ạ

a: Xét ΔCHB vuông tại H và ΔCBA vuông tại B có

\(\widehat{HCB}\) chung

Do đó: ΔCHB~ΔCBA

b: 

Xét ΔAHB vuông tại H và ΔABC vuông tại B có

\(\widehat{HAB}\) chung

Do đó: ΔAHB~ΔABC

=>\(\dfrac{AH}{AB}=\dfrac{AB}{AC}\)

=>\(AB^2=AH\cdot AC\)

c: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC=\sqrt{15^2+20^2}=25\left(cm\right)\)

ΔAHB~ΔABC

=>\(\dfrac{BH}{BC}=\dfrac{BA}{AC}\)

=>\(BH=\dfrac{AB\cdot BC}{AC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

d: Xét ΔBKH vuông tại K và ΔBHA vuông tại H có

\(\widehat{KBH}\) chung

Do đó: ΔBKH~ΔBHA

=>\(\dfrac{BK}{BH}=\dfrac{BH}{BA}\)

=>\(BH^2=BK\cdot BA\left(1\right)\)

Xét ΔBIH vuông tại I và ΔBHC vuông tại H có

\(\widehat{IBH}\) chung

Do đó: ΔBIH~ΔBHC

=>\(\dfrac{BI}{BH}=\dfrac{BH}{BC}\)

=>\(BH^2=BI\cdot BC\left(2\right)\)

Từ (1),(2) suy ra \(BK\cdot BA=BI\cdot BC\)

=>\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)

Xét ΔBKI vuông tại B và ΔBCA vuông tại B có

\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)

Do đó: ΔBKI~ΔBCA

e: ΔBCA vuông tại B

mà BM là đường trung tuyến

nên MB=MC

=>ΔMBC cân tại M

\(\widehat{NIB}+\widehat{NBI}=\widehat{MCB}+\widehat{MAB}=90^0\)

=>BM\(\perp\)IK tại N

ta có: \(BK\cdot BA=BH^2\)

=>\(BK\cdot15=12^2=144\)

=>BK=144/15=9,6(cm)

\(BI\cdot BC=BH^2\)

=>\(BI\cdot20=12^2=144\)

=>BI=7,2(cm)

Xét tứ giác BKHI có \(\widehat{BKH}=\widehat{BIH}=\widehat{KBI}=90^0\)

nên BKHI là hình chữ nhật

=>KI=BH=12(cm)

Xét ΔBIK vuông tại B có BN là đường cao

nên \(\left\{{}\begin{matrix}BN\cdot IK=BK\cdot BI\\KN\cdot KI=KB^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BN\cdot12=7,2\cdot9,6\\KN\cdot12=9,6^2\end{matrix}\right.\)

=>BN=5,76(cm); KN=7,68(cm)

ΔBKN vuông tại N

=>\(S_{BNK}=\dfrac{1}{2}\cdot NB\cdot NK=\dfrac{1}{2}\cdot5,76\cdot7,68=22,1184\left(cm^2\right)\)

5 tháng 5 2020

hình tự vẽ nhé 

5 tháng 5 2020

ok banj

16 tháng 12 2023

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot25=15\cdot20=300\)

=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(3\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(4\right)\)

Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN đồng dạng với ΔACB

c: Ta có: ΔABC vuông tại A

mà AK là đường trung tuyến

nên AK=KC=KB

Ta có: KA=KC

=>ΔKAC cân tại K

=>\(\widehat{KAC}=\widehat{KCA}\)

Ta có: ΔAMN đồng dạng với ΔACB

=>\(\widehat{ANM}=\widehat{ABC}\)

Ta có: \(\widehat{KAC}+\widehat{ANM}\)

\(=\widehat{ABC}+\widehat{KCA}=90^0\)

=>AK\(\perp\)MN tại I

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)

=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)

=>BH=225/25=9(cm); CH=400/25=16(cm)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\)

=>\(AM\cdot15=12^2\)=144

=>AM=144/15=9,6(cm)

Ta có: AMHN là hình chữ nhật

=>AH=MN

mà AH=12cm

nênMN=12cm

Ta có: ΔANM vuông tại A

=>\(AN^2+AM^2=NM^2\)

=>\(AN^2+9,6^2=12^2\)

=>AN=7,2(cm)

Xét ΔIMA vuông tại I và ΔAMN vuông tại A có

\(\widehat{IMA}\) chung

Do đó: ΔIMA đồng dạng với ΔAMN

=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)

16 tháng 12 2023

cảm ơn ạ

Bài 3:

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{ABC}\) chung

Do đó: ΔHBA~ΔABC

b: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=9^2+12^2=225\)

=>\(BC=\sqrt{225}=15\left(cm\right)\)

Xét ΔBAC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot15=9^2=81\)

=>\(BH=\dfrac{81}{15}=5,4\left(cm\right)\)

c: ta có: HK\(\perp\)AB

AC\(\perp\)AB

Do đó: HK//AC

Xét ΔCAB có HK//AC

nên \(\dfrac{HK}{AC}=\dfrac{BH}{BC}\)

=>\(\dfrac{HK}{12}=\dfrac{5.4}{15}=\dfrac{54}{150}=\dfrac{9}{25}\)

=>\(HK=12\cdot\dfrac{9}{25}=\dfrac{108}{25}=4,32\left(cm\right)\)

12 tháng 4 2022

a, Xét tam giác HBA và tam giác ABC có 

^B _ chung ; ^BHA = ^BAC = 900

Vậy tam giác HBA ~ tam giác ABC (g.g) 

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)

\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)

b, Xét tam giác CHI và tan giác CAH có 

^AIH = ^CHA = 900

^C _ chung 

Vậy tam giác CHI ~ tam giác CAH (g.g)

\(\dfrac{CH}{AC}=\dfrac{CI}{CH}\Rightarrow CH^2=CI.AC\)

14 tháng 4 2021

A B C 6 8 H E D

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^AHB = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

c, tam giác ABC vuông tại A, có đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm 

Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )

\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm 

d, phải là cắt AC nhé, xem lại đề nhé bạn