K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

a)Xét 2\(\Delta\)vuông ABC và AHB có

\(\widehat{BAC}:chung\)

\(\Rightarrow\Delta ABC\sim\Delta AHB\)

c)Vì Δ ABC vuông tại B có

\(\Rightarrow AB^2+BC^2=AC^2\)

\(\Rightarrow3^2+4^2=BC^2\)

\(\Rightarrow BC^2=25\Rightarrow BC=\sqrt{25}=5cm\)

a: Xét ΔABC vuông tại B và ΔAHB vuông tại H có

góc HAB chung

Do đó: ΔABC\(\sim\)ΔAHB

b: Xét ΔBAH có BI là phân giác

nên IB/BA=IH/AH

hay \(IB\cdot AH=IH\cdot AB\)

c: AC=5cm

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm

 

a) Xét ΔABH vuông tại H và ΔACK vuông tại K có 

\(\widehat{BAH}=\widehat{CAK}\)(AK là tia phân giác của \(\widehat{BAC}\))

Do đó: ΔABH\(\sim\)ΔACK(g-g)

c) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{20}=\dfrac{CD}{25}\)

mà BD+CD=BC=30cm(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{20}=\dfrac{CD}{25}=\dfrac{BD+CD}{20+25}=\dfrac{30}{45}=\dfrac{2}{3}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{20}=\dfrac{2}{3}\\\dfrac{CD}{25}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{40}{3}\left(cm\right)\\CD=\dfrac{50}{3}\left(cm\right)\end{matrix}\right.\)

Vậy: \(BD=\dfrac{40}{3}cm;CD=\dfrac{50}{3}cm\)

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: BA/BH=BC/BA

=>BA^2=BH*BC

22 tháng 5 2021

B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB

             +)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )

                                                          BAC chung

                    Do đó: tg AEC ~ tg ADB ( gg)

         => AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)

     b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )

                        

22 tháng 5 2021

A B C 5 5 6 M N

a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )

\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)

\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm 

\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm

a) Xét ΔABC vuông tại B và ΔAHB vuông tại H có 

\(\widehat{BAH}\) chung

Do đó: ΔABC\(\sim\)ΔAHB(g-g)

b) Xét ΔCED vuông tại D và ΔBEH vuông tại H có 

\(\widehat{CED}=\widehat{BEH}\)(hai góc đối đỉnh)

Do đó: ΔCED\(\sim\)ΔBEH(g-g)

Suy ra: \(\dfrac{CE}{BE}=\dfrac{CD}{BH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BH\cdot CE=CD\cdot BE\)(Đpcm)