K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại B và ΔAID vuông tại I có

AD chung

góc BAD=góc IAD

Do đo:ΔABD=ΔAID

Suy ra: AB+AI

b: Xét ΔBDM vuông tại Bvà ΔIDC vuông tại I có

DB=DI

góc BDM=góc IDC
Do đo: ΔBDM=ΔIDC

Suy ra: DM=DC

c: Ta có: AB+BM=AM

AI+IC=AC

mà AB=AI

và BM=IC

nên AM=AC
=>ΔAMC cân tại A

mà góc MAC=60 độ

nên ΔAMC đều

d: Xét ΔDIC vuông tại I có sin ICD=ID/DC

=>ID/DC=1/2

=>ID=1/2DC

=>MD=2DI

a: Xét ΔABD vuông tại B và ΔAID vuông tại I có

AD chung

\(\widehat{BAD}=\widehat{IAD}\)

Do đó: ΔABD=ΔAID

Suy ra: AB=AI

hay ΔABI cân tại A

b: Xét ΔBDM vuông tại B và ΔIDC vuông tại I có

DB=DI

\(\widehat{BDM}=\widehat{IDC}\)

Do đó: ΔBDM=ΔIDC

Suy ra: DM=DC

c: Ta có: ΔBDM=ΔIDC

nên BM=IC

Ta có: AB+BM=AM

AI+IC=AC

mà AB=AI

và BM=IC

nên AM=AC
hay ΔAMC cân tại A

mà \(\widehat{MAC}=60^0\)

nên ΔAMC đều

8 tháng 5 2016

A B C D I M E   

Chứng minh: 

a) - Xét ΔABD và ΔAID có

       Góc ABD = Góc AID (=90 độ)

       AD chung 

       Góc BAD = Góc IAD ( AD là phân giác của góc A)

→ ΔABD = ΔAID (Cạnh huyền - góc nhọn)

    →AB = AI (2 cạnh tương ứng)

        BD = BI (2 cạnh tương ứng)

b) - Xét ΔBMD và ΔICD có:

        Góc MBD = Góc CID (=90 độ)

        BD = BI (CMT)

         Góc BDM = Góc IDC (Đối đỉnh)

→ ΔBMD = ΔICD (g.c.g)

  → DM = DC (2 cạnh tương ứng)

      BM = IC   ( nt )

c) - Ta có:

AB = AI (CMT) và BM = IC (CMT)

→ AB + BM = AI + IC → AM = AC

          → ΔAMC cân tại A                                                                                            (1)

   - Mà: 

ΔABC là tam giác nửa đều (Góc B = 90 độ, Góc C = 30 độ → Góc A =60 độ)                     (2)

Từ (1) và (2) 

→ ΔAMC là tam giác đều

d) - Ta có: MD = MC (CMT)                                                                                               (3)

    - Xét ΔIDC có góc DIC = 90 độ

                           góc ICD = 30 độ

→ ID =  \(\frac{1}{2}\) DC (Trong Δ vuông, cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)         (4)

Từ (3) và (4) 

→ ID = \(\frac{1}{2}\) MD

- Xong rồi nhé

- Mất 1 tiếng ngồi vẽ hình và ngồi nghĩ cho bạn đấy

- GT, KL bạn tự làm

- Hon CM có hơi dài dòng còn có đúng không thì có đấy, chỉ là dài thôi

- Tham khảo, chép xong thì đọc lại xem hiểu không

- Bài này không phải dạng vừa đâu!!

- Có gì cho Hon không nạ

- Chúc bạn học tốt, thi học kì đứng trong TOP 3 nhann

 

9 tháng 5 2016

cảm ơn bn rất nhiều yeu

24 tháng 4 2018

Mình cx đg cần câu trả lời của bài này.

28 tháng 4 2018

ai giải đc bài này ko ???

a: Xét ΔABD vuông tại B và ΔAID vuông tại I có

AD chung

góc BAD=góc IAD

=>ΔABD=ΔAID

=>AB=AI

b: Xét ΔDBM vuông tại B và ΔDIC vuông tại I có

DB=DI

góc BDM=góc IDC

=>ΔBDM=ΔIDC

=>DM=DC

c: AB+BM=AM

AI+IC=AC

mà AB=AI và MB=IC

nên AM=AC

mà góc MAC=60 độ

nên ΔMAC đều

d: Xét ΔDBM vuông tại B có sin M=BD/DM

=>BD/DM=1/2

=>DM=2BD=2DI

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

29 tháng 3 2016

gócDCB=gócEBC=góc1/2ACB=góc1/2ABC

a)xét tg DCB và tg EBC có

BC là cạnh  chung

góc B=góc C

góc DCB=góc EBC

suy ra  tg DCB = tg EBC(g.c.g)

suy ra CD=BE(hai cạnh tương ứng)

xét tgADC và tgAEB có 

góc A là góc chung là góc vuông

AB=AC

DC=EB

suy ra tgADC = tgAEB (ch.cgv)

suy ra AD=AE(hai cạnh tương ứng)

câu b và câu c k xong đi rồi nói

19 tháng 12 2020

Bạn chú ý viết cách phần cho và phần yêu cầu.

a/ Xét t/g ABI và t/g ADI có

AI : chung

\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)

AB = AD (GT)

=> t/g ABI = t/g ADI (c.g.c)

=> BI = DI (2 cạnh t/ứ)

b/ Có t/g ABI = t/g ADI

=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)

=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)

=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có

\(\widehat{IBK}=\widehat{IDC}\)

IB = DI (cmt)

\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)

=> t/g BIK = t/g DIC (g.c.g)

c/ Có t/g BIK = t/g DIC

=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD

=> AK = AC

=> t/g AKC cân tại A 

Mà AI là pg góc BAC (K thuộc AB)

=> AI đồng thời là đường cao t/g AKC

=> AI ⊥ KC Mà BH ⊥ KC

=> AI // BH

19 tháng 12 2020

bạn tự vẽ hình nhá

Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)

a) xét Δ ABI và ΔADI, có:

 AB=AD

\(\widehat{BAI}=\widehat{DAI}\)  (cmt)    

AI chung

⇒Δ ABI  =Δ ADI (c.g.c)

⇒BI=DI (2 cạnh t/ứng) (đpcm)

b) Do Δ ABI  =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)

Có: \(\widehat{ABI}+\widehat{IBK}\) =180(2 góc kề bù)

      \(\widehat{ADI}+\widehat{IDC}\) =180(2 góc kề bù)

Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)

Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)

xét Δ BKI và Δ DCI có:

\(\widehat{IBK}=\widehat{IDC}\) (cmt)

BI=ID (cmt)

\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)

⇒Δ BKI = Δ DCI (g.c.g) (đpcm)

c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC

Có AB=AD (gt) ; BK=DC (cmt)

⇔AB+BK=AD+DC

⇔AK=AC

⇒Δ ACK cân tại A.

Mà AI là phân giác của \(\widehat{KAC}\) (gt)

⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.

⇒AI ⊥ CK. mà BH ⊥ CK (gt)

⇒AI // BH (đpcm)

 

1 tháng 5 2023

Tự kẻ hình

a) - Vì tam giác ABC vuông tại A (gt)
=> tam giác ABD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác EBD vuông tại E (tc)
- Xét tam giác vuông ABD và tam giác vuông EBD, có:
+ Chung BD
+ góc ABD = góc EBD ( BD là p/giác góc ABC)
=> tam giác vuông ABD = tam giác vuông EBD (cạnh huyền - góc nhọn)

b) - Vì tam giác vuông ABD = tam giác vuông EBD (cmt)
=> AD = ED ( 2 cạnh tương ứng )
- Vì tam giác ABC vuông tại A (gt)
=> tam giác AMD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác ECD vuông tại E (tc)
- Xét tam giác vuông AMD và tam giác vuông ECD, có: 
+ AD = ED (cmt)
+ góc ADM = góc EDM (đối đỉnh)
=> tam giác vuông AMD = tam giác vuông ECD (cạnh góc vuông - góc nhọn kề) 
   => DM = DC (2 cạnh tương ứng) 

c) - Vì tam giác vuông AMD = tam giác vuông ECD (cmt)
=> AM = EC (2 cạnh tương ứng) 
- Xét tam giác vuông AMD, có 
   AD + AM > DM (bất đẳng thức tam giác) 
Mà AM = EC (cmt)
=> AD + EC > DM (đpcm)