Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{AB}{AC}=\frac{5}{2}\Rightarrow2AB=5AC\)
\(\Rightarrow AB=\frac{5}{2}AC\)
Áp dụng ĐL Py-ta-go vào \(\Delta ABC\) vuông tại A
Ta có: \(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=\left(\frac{5}{2}AC\right)^2+AC^2\)
\(\Rightarrow BC^2=\frac{25}{4}.AC^2+AC^2\)
\(\Rightarrow BC^2=\left(\frac{25}{4}+1\right)AC^2\)
\(\Rightarrow AC^2=BC^2:\left(\frac{25}{4}+1\right)\)
\(\Rightarrow AC^2=26^2:\frac{29}{4}\)
\(\Rightarrow AC^2\approx5,83\)
\(\Rightarrow AC=\sqrt{5,83}\)cm
Lại có: \(AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2\approx676-5,83=670.17\)
\(\Rightarrow AB=\sqrt{670.17}\)cm
Vậy .....
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
\(\dfrac{BC}{AB}=\dfrac{5}{12}\Rightarrow BC=\dfrac{5}{12}AB\)
Áp dụng định lý Pitago:
\(AB^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+\left(\dfrac{5}{12}AB^2\right)=26^2\)
\(\Leftrightarrow\dfrac{169}{144}AB^2=26^2\)
\(\Leftrightarrow AB^2=576\)
\(\Rightarrow AB=24\left(cm\right)\)
\(BC=\dfrac{5}{12}AB=\dfrac{5}{12}.24=10\left(cm\right)\)