K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2015

B A C D E G

Do AD là trung tuyến của tam giác ABC và G là trọng tâm nên AG = 2/3 . AD = 2/3. 18 = 12 cm

BE là trung tuyến của tam giác ABC và G là trọng tâm nên GE = 1/3. BE = 1/3. 15 = 5 cm

b) 3 đường trung tuyến trong 1 tam giác luôn cắt nhau tại 1 điểm nên CG chính là đường trung tuyến của tam giác ABC

c) Điểm A nằm  ngoài đường thẳng Bc có: AD là đường xiên và AB là đường vuông góc

do đó : AB < AD (mối quan hệ giữa đường vuông góc và đường xiên)

9 tháng 8 2016

1)

xét ΔAEK và Δ CEG có:

EA=EC(gt)

EG=EK(gt)

góc AEK= góc GEC( 2 góc đối đỉnh)

=> ΔAEK=ΔCEG(c.g.c)

=> AK=GC

cm tương tự ta có:ΔGDC=ΔIDB(c.g.c)

=> GC=BI

 và AK=GC

=> AK=GC=BI

2)

theo câu a, ta có ΔAEK=ΔCEG(c.g.c)

=> góc EAK= góc ECG

=> AK//GC

theo câu a, ta có: ΔGDC=ΔIDB(c.g.c)

=> góc DGC= góc DIB

=> GC//BI

   và AK//GC

=> AK//BI

3)

ta có: AD là đường trung tuyến ứng với cạnh BC của Δ ABC

BE là đường trung tuyến ứng với cạnh AC của ΔABC

=> giao của AD và BE là trọng tâm của ΔABC

=> G là trọng tâm của ΔABC

=> GA=2GD

mà GI=ID

=> GA=GI+ID=GI

ta có G là trọng tâm của ΔABC; BE là đường trung tuyến của ΔABC

=> BG=2GE

mà GE=EK

=> BG=GE+EK=GK

xét ΔGAK và ΔGIB có :

GA=GI(cmt)

GK=GB(cmt)

góc AGK= góc BGI(2 góc đối đỉnh)

=>ΔGAK=ΔGIB(c.g.c)

4)

ta có  AD là đường trung tuyến của ΔABC

=> AD=3GD

hay DG=DA:3

ta có : BE là đường trung tuyến của ΔABC

=> GE=BE:3

5)

nếu CF là đường trung tuyến của ΔABC cắt AD tại G thì G là trọng tâm của tam giác ΔABC( tương tự như câu 4)

=> CG=2GF

NX: 3 đường trung tuyến của 1 tam giác cắt nhau tại 1 điểm. điểm này gọi là trọng tâm của tam giác đó

điểm này cách trung điểm của cạnh mà đoạn thẳng đi qua nó một khoảng =1/2 k/cách từ điểm đó đến đỉnh của tam giác mà đoạn thẳng đã đi  nó 

10 tháng 6 2020

Theo tính chất đường trung tuyến ta có

\(\frac{AG}{AD}=\frac{GB}{BE}=\frac{2}{3}\)

\(\Leftrightarrow\frac{AG}{12}=\frac{GB}{9}=\frac{2}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{AG}{12}=\frac{2}{3}\\\frac{GB}{9}=\frac{2}{3}\end{cases}\Rightarrow\orbr{\begin{cases}AG=8\left(cm\right)\\GB=6\left(cm\right)\end{cases}}}\)

Vì \(G\in BE\)

\(\Rightarrow BG+GE=BE\)

\(\Rightarrow GE=9-6=3\left(cm\right)\)

Vậy \(AG=8cm\) và \(GE=3cm\)

Bác lm dài thế >: t/c 3 đg trung tuyến áp dụng luôn cx đc mà.

Theo t/c 3 đường trung tuyến ta có :

\(AG=\frac{2}{3}AD=\frac{2}{3}.12=\frac{24}{3}=8\left(cm\right)\)

\(GE=\frac{1}{3}BE=\frac{1}{3}.9=\frac{9}{3}=3\left(cm\right)\)

BC=căn 8^2+6^2=10cm

=>AD=5cm

AG=2/3*5=10/3cm

GD=5-10/3=5/3cm