K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

Theo định lý Pytago, tam giác ABC ( Góc A=90 độ ) có:

\(BC^2=AB^2+AC^2\)

Mà AB, BC, AC > 0 nên BC2 > AB2, BC2 > AC2 hay BC > AB và AC suy ra BC lớn nhất

2 tháng 10 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′. Ta có tam giác vuông ABC1 bằng tam giác vuông A'B'C', suy ra B′C′=BC1. Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1. Vì AC > AC1 nên BC > BC1. Suy ra BC > B'C'.

a: Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′.

Ta có  ΔABC1=ΔA'B'C'

Suy ra B′C′=BC1

Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1.

Vì AC > AC1 nên BC > BC1.

Suy ra BC > B'C'.

b: 

-Giả sử AC<A'C'.

Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.

Giả sử AC=A'C'. Khi đó ta có ΔABC=ΔA'B'C' (c.g.c).

Suy ra BC=B'C'.

Điều này cũng không đúng với giả thiết BC>B'C'. Vậy ta phải có AC>A'C'.

18 tháng 1 2019

Vì điểm H nằm giữa B và C nên ta có: BH + HC = BC (1)

Lại có: AB > BH (đường xiên lớn hơn đường vuông góc)

AC > CH (đường xiên lớn hơn đường vuông góc)

Cộng từng vế ta có: AB + AC > BH + CH (2)

Từ (1) và (2) suy ra: AB + AC > BC

15 tháng 12 2018

Theo giả thiết, tam giác ABC có độ dài cạnh BC là lớn nhất nên chân đường vuông góc kẻ từ A đến cạnh BC chắn chắn phải nằm giữa B và C.

Suy ra H nằm giữa B và C.

⇒ HB + HC = BC

+) Xét tam giác AHB vuông tại H ta có: HB < AB (1) (vì trong tam giác vuông cạnh huyền là cạnh lớn nhất)

+) Xét tam giác AHC vuông tại H ta có: HC < AC (2) (vì trong tam giác vuông cạnh huyền là cạnh lớn nhất)

Lấy (1) + (2) ta được:

HB + HC < AB + AC

Mà HB + HC = BC suy ra BC < AB + AC hay AB + AC > BC

ΔBAEΔBAE có:

BE=AB(gt)BE=AB(gt)

⇒ΔBAE⇒ΔBAE cân tại BB

⇒BAEˆ=BEAˆ⇒BAE^=BEA^(1)(1)

Ta có: BA⊥ACBA⊥AC ( ΔABCΔABC vuông tại AA )

EK⊥AC(gt)EK⊥AC(gt)

Nên: BABA // EKEK

⇒BAEˆ=AEKˆ(2)⇒BAE^=AEK^(2)

Từ (1) và (2) suy ra: BEAˆ=AEKˆBEA^=AEK^

Xét ΔAHEΔAHE và ΔAKEΔAKE có:

Hˆ=Kˆ(=90o)H^=K^(=90o)

BEAˆ=AEKˆ(cmt)BEA^=AEK^(cmt)

ACAC là cạnh huyền chung

⇒ΔAHE=ΔAKE⇒ΔAHE=ΔAKE ( cạnh huyền - góc nhọn )

⇒AH=AK

 

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

BA=BE

Do đó:ΔABD=ΔEBD

Suy ra: góc ABD= góc EBD

hay BD là tia phân giác của góc ABC

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

mà DC>DE

nên DF>DE

d: Đề sai rồi bạn

28 tháng 2 2022

s câu d sai bạn

 

26 tháng 8 2020

a)Ta có:BD=BA(gt)

⇒ΔBAD cân tại B

⇒góc BAD=góc BDA

Trong ΔADH vuông tại H,có:

góc DAH+góc ADH=90 độ

Mà góc BAD+góc DAK=90 độ

⇒DAH+ADH=BAD+DAK

Mà góc ADH=góc BAD(cmt)

⇒Góc DAH=góc DAK

⇒AD là tia phân giác của góc HAC

b)Xét ΔADH và ΔADK,có:

góc H=góc K=90 độ

AD chung

góc DAH=góc DAK

⇒ΔADH=ΔADK(ch-gn)

⇒AH=AK(2 cạnh t/ứ)

c)Ta có:KC<DC(ΔKDC vuông tại K)

Mà KC=AC-AK

     DC=BC-BD

⇒AC-AK<BC-BD

⇒ AC + BD < BC + AK

Mà BD=BA(gt)

⇒AK = AH (cmt)

⇒AB+AC<BC+AH

#Cừu

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAM vuôg tại A và ΔBDM vuông tại D có

BM chung

BA=BD

=>ΔBAM=ΔBDM

=>MA=MD

c: Xét ΔMAN vuông tại A và ΔMDC vuông tại D có

MA=MD

góc AMN=góc DMC

=>ΔMAN=ΔMDC

=>MN=MC