Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Py-ta-go, ta có:
BC² = AB² + AC²
BC² = 3² + 4²
BC² = 9 + 16 = 25
⇒ BC =√25 = 5 cm
b) Xét ΔABD ( A = 90*) và ΔHBD ( H = 90*), có
BD chung
ABD = HBD ( BD là tia phân giác của góc ABC )
⇒ ΔABD = ΔHBD ( cạnh huyền - góc nhọn)
c) ΔHDC, có: BHD là góc vuông
⇒ DC là cạnh lớn nhất
⇒ HD < DC
Mà HD = DA (ΔABD = ΔHBD)
⇒ DA < DC (đpcm)
a) Xét ΔABCΔABC vuông tại A có :
\( A B ² + A C ² = B C ² (đ/l Py-ta-go)\)
\( ⇒ 3 ² + 4 ² = B C ²\)
\(⇒ B C ² = 25\)
\(⇒ B C = 5 ( c m )\)
Vậy \(BC=5cm\)
b) Xét \(Δ A B D và Δ H B D\)có :
\(+ ∠ B A D = ∠ B H D = 90 °\)
\(+ B D c h u n g\)
\(+ ∠ A B D = ∠ C B D \) (BD là phân giác của ∠B)
\( ⇒ Δ A B D = Δ H B D (ch-gn)\)
Vậy \(Δ A B D = Δ H B D\)
tôi chx bt lm
xin lỗi nhé
\(a.\)Xét \(\Delta ABD\)vuông tại \(A\) và \(\Delta HBD\) vuông tại \(H\)
có: \(AD\): cạnh chung
\(\widehat{ABD}=\widehat{HBD}\) ( vì \(AD\)là tia phân giác của \(\widehat{ABH}\))
\(\Rightarrow\)\(\Delta ABD=\Delta HBD\) (cạnh huyền - góc nhọn)
\(\Rightarrow\) \(AD=DH\) ( 2 cạnh tương ứng)
\(b.\) Xét \(\Delta DCH\)vuông tại \(H\)có: \(DH< DC\)(vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
mà \(AD=DH\) \(\Rightarrow\)\(AD< DC\)(đpcm)
\(c.\)Xét \(\Delta KBH\)và \(\Delta CBA\)có: \(\widehat{BHK}=\widehat{BAC}=90^0\) ( gt )
\(BH=AB\) ( vì \(\Delta ABD=\Delta HBD\))
\(\widehat{KBH}\): góc chung ( gt )
\(\Rightarrow\)\(\Delta KBH=\Delta CBA\) (g.c.g)
\(\Rightarrow\)\(BK=BC\)(2 cạnh tương ứng)
\(\Rightarrow\)\(\Delta KBC\)cân tại \(B\)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
A B C 6 10 D H K
a, Xét \(\Delta ABC\)VUÔNG tại A
Áp dụng định lý pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=10^2-6^2\)
\(\Rightarrow AB^2=100-36\)
\(\Rightarrow AB^2=64\)
\(\Rightarrow AB=\sqrt{64}=8\)
VẬY AB=8 cm
b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:
\(\widehat{BAD}=\widehat{BHD}=90độ\)
\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)
\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)
c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)
\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)
lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)
\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)
\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)
Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:
\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)
Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)
\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta KBC\) cân tại B
a: \(BC=\sqrt{34}\left(cm\right)\)
b: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó:ΔCBD cân tại C
c: Xét ΔCKA vuông tại K và ΔCHA vuông tại H có
CA chung
\(\widehat{KCA}=\widehat{HCA}\)
Do đó: ΔCKA=ΔCHA
Suy ra: CK=CH
d: Xét ΔCBD có CK/CD=CH/CB
nên HK//BD
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
Áp dụng định lí pitago cho tam giác ADH vuông tại H và tam giác HAC vuông tại H
=> AH2 = AD2- DH2 và AH2 = AC2 - HC2
=> AD2 - DH2 = AC2 - HC2
=> AD2 + HC2 = AC2 + DH2