Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Xét ΔABC có AD là phân giác
nen AB/BD=AC/CD
=>AB/3=AC/4
Đặt AB/3=AC/4=k
=>AB=3k; AC=4k
Ta có: \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow25k^2=35^2\)
=>k2=49
=>k=7
=>AB=21cm; AC=28cm
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E F
a)Xét \(\Delta ABC\) vuông tại A có :
\(BC^2=AB^2+AC^2\) (định lý pytago)
\(225=AB^2+144\)
\(\Rightarrow AB^2=225-144\)
\(AB^2=81\)
AB = 9cm
b)Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E có :
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
=>\(\Delta ABD\) =\(\Delta EBD\) (ch-gn)
=>\(\widehat{ADB}=\widehat{EDB}\)
=> DB là tia phân giác của \(\widehat{ADE}\)
c)M mình ko biết ở đâu nên mình ko làm nhé
Vì EF // BD nên \(\widehat{CFE}=\widehat{CDB}\)
Có : \(\widehat{CFE}+\widehat{EFD}=180^o\)
\(\widehat{CDB}+\widehat{BDA}=180^o\)
mà \(\widehat{CFE}=\widehat{CDB}\)
=> \(\widehat{EFD}=\widehat{BDA}\)
mà \(\widehat{BDA}=\widehat{BDE}=\widehat{DEF}\)
=> \(\widehat{EFD}=\widehat{DEF}\) => \(\Delta DEF\) cân tại D
d) Có : \(AB=BE\) (\(\Delta ABD\) =\(\Delta EBD\))
=> \(\Delta ABE\) cân tại B
mà BD là đường phân giác của góc B
=> BD là đường trung trực của AE
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự vẽ hình nhé bạn.
Xét \(\Delta ABC\)có AD là phân giác \(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}\)
mà \(BD=3cm\); \(DC=4cm\)\(\Rightarrow\frac{AB}{AC}=\frac{3}{4}\)\(\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
Vì \(\Delta ABC\)vuông tại A nên theo định lý Pytago ta có: \(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2+AC^2=\left(BD+DC\right)^2\)\(\Rightarrow AB^2+AC^2=\left(3+4\right)^2\)\(\Rightarrow AB^2+AC^2=7^2=49\)
Từ \(\frac{AB}{3}=\frac{AC}{4}\)\(\Rightarrow\left(\frac{AB}{3}\right)^2=\left(\frac{AC}{4}\right)^2=\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{9+16}=\frac{49}{25}\)
\(\Rightarrow AB^2=\frac{49}{25}.9=\frac{441}{25}\)\(\Rightarrow AB=\pm\frac{21}{5}\)
\(AC^2=\frac{49}{25}.16=\frac{784}{25}\)\(\Rightarrow AC=\pm\frac{28}{5}\)
Vì \(AB>0\); \(AC>0\)\(\Rightarrow AB=\frac{21}{5}\)và \(AC=\frac{28}{5}\)
Vậy \(AB=\frac{21}{5}\) và \(AC=\frac{28}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
vi tam giac ABC co AD la pg cua goc A => AB/AC = BD/DC (t/c) =>AB^2/AC^2 = BD^2/DC^2
vi BC=BD+DC=15+20=35
vi tam giac ABC vuong =>AB^2 = BC^2 -AC^2 (py ta go)
=>BC^2 - AC^2/AC^2 = BD^2/DC^2 =>BC^2 x DC^2 - AC^2 x DC^2 =BD^2 x AC^2
hay 35^2 x 20^2 -AC^2 x 20^2 = 15^2 x AC^2
=>490000 = 225AC^2 + 400AC^2 =>625AC^2 =490000 =>AC^2 =784 =>AC=28cm
AB^2 = BC^2 - AC^2 = 35^2 -784 =441cm =>AB=21cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABD và ΔECD có
\(\widehat{ADB}=\widehat{EDC}\)
\(\widehat{ABD}=\widehat{ECD}\)
Do đó; ΔABD\(\sim\)ΔECD
b: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/8=DC/12
=>DB/2=DC/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{2}=\dfrac{DC}{3}=\dfrac{DB+DC}{2+3}=\dfrac{15}{5}=3\)
Do đó: DB=6cm; DC=9cm