Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT\(\Delta OAB\)VÀ\(\Delta ODC\)
AO=OD
BO=OC =>\(\Delta OAB=\Delta ODC\left(c-g-c\right)\)
^AOB=^COD
=>^B=^BCD
TA LẠI CÓ ^B + ^ACB=\(90^0\)
=>^BCD + ^ACB=\(90^0\)
XÉT \(\Delta ACP\)VÀ\(\Delta CAB\)
^BAC=^ACD=\(90^0\)
AB=CD =>\(\Delta ACP=\Delta CAB\)(2 CẠNH GÓC VUÔNG)
AC chung
=>BC=AP
vì \(AO=OD=\frac{AD}{2}\)nên \(AO=\frac{BC}{2}\) hay BC=2AO
mk sẽ tích và add cho bạn nào làm đúng và nhanh nhất trong hôm nay thôi nha vì mk đang cần gấp cho ngày mai.
a: Xét ΔOAB và ΔODC có
OA=OD
góc AOB=góc DOC
OB=OC
=>ΔOAB=ΔODC
b: Xét tứ giác ABDC có
O là trung điểm chung của AD và BC
=>ABDC là hbh
mà góc BAC=90 độ
nên ABDC là hình chữ nhật
=>góc ACD=90 độ
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
1.a. xet tam giac ABD va tam giac CDE co : b.B1=B2=450ma vi cai cau a nen C1=C2=450. Vay C=900
AD=AC (vi D la trung diem cua AC) 2.a Xet tam giac ODC va tam giac OAB co
DB = DE (gt) OA=OC(gt) ; OD= OB (gt) ; goc DOC=goc AOB
goc ADB = goc EDC (doi dinh) Suy ra tam giac ODC=tam giac OAB (c.g.c) . Vay AB song
suy ra tam giac ABD = tam giac CDE (c.g.c) song voi CD . HET GIAY RUI