Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: ADME là hình chữ nhật
=>AD//EM và AD=EM(1)
M là trung điểm của EK
=>\(EK=2EM\left(2\right)\)
A là trung điểm của ID
=>\(ID=2DA\left(3\right)\)
Từ (1),(2),(3) suy ra EK=ID
EM//AD
K\(\in\)EM
I\(\in\)AD
Do đó: EK//ID
Xét tứ giác EKDI có
EK//DI
EK=DI
Do đó: EKDI là hình bình hành
a) ADME là hình chữ nhật vì có 3 góc vuông: \(\widehat{A}\)= \(\widehat{D}\)= \(\widehat{E}\)= 900
b) Để ADME là hình vuông thì AM là phân giác \(\widehat{A}\)
Vậy M là giao đường phân giác góc A với BC thì ADME là hình vuông
a) tam giác abc vuông tại a, suy ra trung tuyến am ứng với cạnh huyền bc bằng 1/2 bc và = 5cm
b) tứ giác adme có â = 90o; d^ = 90o; ê = 90o => adme là hình chữ nhật
HT
TL
a) Xét tứ giác AEMD có
ˆEAD=900EAD^=900(ˆBAC=900BAC^=900, E∈AC, D∈AB)
ˆAEM=900AEM^=900(ME⊥AC)
ˆADM=900ADM^=900(MD⊥AB)
Do đó: AEMD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b)
Ta có: K và M đối xứng nhau qua E(gt)
nên E là trung điểm của KM
Xét ΔAKM có
AE là đường cao ứng với cạnh KM(AE⊥ME, K∈ME)
AE là đường trung tuyến ứng với cạnh KM(E là trung điểm của KM)
Do đó: ΔAKM cân tại A(Định lí tam giác cân)
mà AE là đường trung tuyến ứng với cạnh đáy KM(E là trung điểm của KM)
nên AE là tia phân giác của ˆKAMKAM^(Định lí tam giác cân)
hay ˆKAE=ˆMAEKAE^=MAE^
Ta có: M và P đối xứng nhau qua D(gt)
nên D là trung điểm của MP
Xét ΔAMP có
AD là đường cao ứng với cạnh MP(AD⊥MD, P∈MD)
AD là đường trung tuyến ứng với cạnh MP(D là trung điểm của MP)
Do đó: ΔAMP cân tại A(Định lí tam giác cân)
mà AD là đường trung tuyến ứng với cạnh đáy MP(D là trung điểm của MP)
nên AD là tia phân giác của ˆMAPMAP^(Định lí tam giác cân)
hay ˆPAD=ˆMADPAD^=MAD^
Ta có: tia AM nằm giữa hai tia AE, AD
nên ˆEAM+ˆDAM=ˆEADEAM^+DAM^=EAD^
hay ˆEAM+ˆDAM=900EAM^+DAM^=900
Ta có: ˆKAP=ˆKAE+ˆMAE+ˆMAD+ˆPADKAP^=KAE^+MAE^+MAD^+PAD^
⇔ˆKAP=2⋅(ˆMAE+ˆMAD)⇔KAP^=2⋅(MAE^+MAD^)
⇔ˆKAP=2⋅900=1800⇔KAP^=2⋅900=1800
⇔K,A,P thẳng hàng(1)
Ta có: ΔAKM cân tại A(cmt)
nên AK=AM
Ta có: ΔAMP cân tại A(cmt)
nên AM=AP
mà AK=AM(cmt)
nên AP=AK(2)
Từ (1) và (2) suy ra A là trung điểm của KP
hay P đối xứng với K qua A(đpcm)
HT
a)xét tứ giác ADME có
\(\widehat{A}\) = 90°(do ΔABC vuông tại A)
\(\widehat{ADM} = 90°\)(do MD⊥AB)
\(\widehat{AEM} = 90°\)(do ME ⊥ AC)
nên ADEM là hình chữ nhật
b) Ta có:
ME = MK = \(\dfrac{EK}{2}\)( do M là trung điểm EK) (1)
DA = AI = \(\dfrac{DI}{2}\)( do A là trung điểm DI) (2)
Mà AD = ME (do ADME là hcn) (3)
Từ (1),(2),(3)
⇒ EK = DI
Mặt khác EK // DI (do AD // ME)
Nên DKEI là hbh
⇒ DK // EI và DK = EI
có hình k ạ?