Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Xét tam giác KAM và tam giác KBC có
\(KA=KB\)( K là trung điểm của AB )
\(\widehat{AKM}=\widehat{BKM}\)(2 góc đối đỉnh)
\(KM=KC\)(gt)
=> Tam giác KAM = Tam giác KBC
=> \(\widehat{KAM}=\widehat{KBM}\)(2 góc tương ứng)
mà \(\widehat{KAM}\)và \(\widehat{KBM}\)là 2 góc nằm ở vị trí so le trong
=> \(AM//BC\)
lại có \(AN//BC\)
=> AM và AN trùng nhau
=> 3 điểm M,A,N thẳng hàng
a) Xét tam giác IBC và tam giác NIA có
\(IB=IN\) ( gt )
\(\widehat{BIC}=\widehat{NIA}\)( đối đỉnh )
\(IC=IA\)( I là trung điểm của AC )
=> Tam giác IBC = Tam giác NIA
xét tam giác ABM và tam giác CMK
AM = MC ( M là trung điểm của AC)
BM=MK
góc AMB =góc CMK
=> tam giác ABM và tam giác CMK( c.g.c)
=>goc BAC = goc ACK ( hai canh tuong ung )
ma goc BAC = 900
=> góc ACK= 900
mình đã trả lời hết các câu rồi nhưng mình ko may nhấn vào trang khác trên màn hình nên khi trả về thì không còn nên mình chỉ làm câu a cho mình xin lỗi nhưng nếu bạn còn cần thì mình giải ngày cho .cảm ơn bạn
t lười vẽ hình lắm, vô cùng xin lỗi :(
a) Vì ∆ ABC cân tại A nên AH vừa là đường cao, vừa là trung tuyến => HB = HC = 12:2 = 6
Áp dụng định lí Py-ta-go cho ∆ AHB, ta được: AH2 + BH2 = AB2 => AB2 = 122 + 92 = 225 = 152 => AB = 15 = AC
=> PABC = AB + AC + BC = 15 + 15 + 18 = 48
b) Vì BM = CN (gt) ; HB = HC (cmt) => HB + BM = HC + CN => HM = HN => AH là trung tuyến của ∆ AMN (1)
Lại có: AH ┴ BC hay AH ┴ MN => AH là đường cao của ∆ AMN (2)
Từ (1) và (2) =>∆ AMN cân tại A
c) Xét ∆ BIM và ∆ CKN vuông tại I và K có:
MB = NC (gt) ; ^KNC = ^IMB (∆AMN cân tại A) => ∆ BIM = ∆ CKN ( ch - gn ) => MI = KN
Mà AM = AN (∆AMN cân tại A) => AI = AK => ∆ AIK cân tại A
=> ^AIK = ^AKI = ( 180o - ^MAN ) : 2 = ^AMN = ^ANM => IK // MN (đồng vị) hay IK // BC
d) Vì IK // MN => ^IKN = ^KCN (slt) ; ^KIB = ^IBM (slt)
Lại có: ^IBM = ^KCN ( vì ∆BIM=∆CKN ) => ^IKN = ^KIB hay ^OIK = ^OKI => ∆OKI cân tại O => OK = OI
Xét ∆ AIO và ∆ AKO có:
AI = AK ( ∆AIK cân tại A) ; OK = OI (cmt) ; AO (chung) => ∆ AIO = ∆ AKO ( c-c-c )
=> ^OAI = ^OAK (3)
Vì ∆AMN cân tại A => AH là phân giác của ∆AMN.=> ^HAM = ^HAN hay ^HAI = ^HAK (4)
Từ (3) và (4) => A, O, H thẳng hàng.
Ya, that's it!
Ta có : Tam giác ABM cân tại B
=>MAB^=AMB^ (1)
Lại có : IMB^=IAB^=90* (2)
Từ 1 và 2 : +)IAM^=90*-MAB^
+)IMA^ =90*-AMB^
=>IAM^=IMA^
=>Tam giác IAM cân tại I
=>IA=iM
A B C M I N K P 1 2
''∠'' là góc nhé.
a) Vì ∆ABC vuông tại A (GT)
=> ∠BAC = 90o (ĐN) (1)
Vì IM ⊥ BC (GT)
=> ∠IMB = 90o
Mà ∠BAC = 90o (Theo (1))
(Ngoặc ''}'' 2 điều trên)
=> ∠BAC = ∠IMB = 90o
Hay ∠BAI = ∠IMB = 90o (2)
Xét ∆ABI và ∆MBI có :
∠BAI = ∠IMB = 90o (Theo (2))
BI chung
BA = BM (Gt)
=> ∆ABI = ∆MBI (cạnh huyền - cạnh góc vuông)
=> AI = IM (2 cạnh tương ứng) (3)
b) Ta có : ∠BAC + ∠NAC = 180o (2 góc kề bù)
Mà ∠BAC = 90o (Theo (1))
=> 90o + ∠NAC = 180o
=> ∠NAC = 180o - 90o = 90o
Vì IM ⊥ BC (GT) => ∠IMC = 90o (ĐN)
(Ngoặc ''}'' 2 điều trên)
=> ∠NAC = ∠IMC = 90o
Hay ∠NAI = ∠IMC = 90o (4)
Lại có : ∠I1 = ∠I2 (2 góc đối đỉnh) (5)
Xét ∆ANI và ∆MCI có :
∠NAI = ∠IMC = 90o (Theo (4))
AI = MI (Theo (3))
∠I1 = ∠I2 (Theo (5))
=> ∆ANI = ∆MCI (g.c.g)
=> AN = MC (2 cạnh tương ứng)
Mà AN + BA = BN
MC + BM = BC
BA = BM (GT)
(Ngoặc ''}'' 4 điều trên)
=> BN = BC
=> ∆NBC cân tại B (ĐN)
P/s : Xin lỗi, mình chỉ làm được đến đây thôi, nghỉ nhiều quá nên mình ngu hẳn, có gì mình nghiên cứu lại sau :(.
Bài làm
a) Xét tam giác AIB và tam giác CIK có:
AI = IC ( Do I là trung điểm AC )
\(\widehat{AIB}=\widehat{CIK}\)( Hai góc đối đỉnh )
BI = IK ( gt )
=> Tam giác AIB = tam giác CIK ( c.g.c )
=> \(\widehat{BAI}=\widehat{ICK}\left(=90^0\right)\)
=> IC vuông góc với CK.
b) Ta có: IC vuông góc với CK
=> AC vuông góc với CK
AC vuông góc với AB
=> CK // AB .
Xét tam giác AKB có:
N là trung điểm AK
I là tủng điể, BK
=> IN là đường trung bình.
=> IN // AB.
Xét tam giác BKC có:
I là trung điểm BK ( Do IB = IK )
M là trung điểm BC
=> IM là đường trung bình.
=> IM // CK
Mà AB // CK
=> IM // IN
Mà IM và IN trùng trung vì có chung I
=> M, I, N thẳng hàng. ( đpcm )