Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
c) Mình bó tay :P
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=) HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=) HD<HC
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=> HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=> HD<HC
vội quá nên ẩu , toán hìh lần sau đăng sớm để giải chớ đăng hơi sát giờ tớ giải nhưng gửi ko kịp
a, xét tam giác BMH và tam giác BDH có : BM chung
HM = HD (gt)
góc BHM = góc BHD = 90
=> tam giác BMH = tam giác BDH (2cgv)
=> BM = BD (đn)
=> tam giác BDM cân tại B (đn)
b, tam giác BMH = tam giác BDH (câu a)
=> góc MBH = góc DBH (đn)
xét tam giác BMC và tam giác BDC có : BC chung
BM = BD (câu a)
=> tam giác BMC = tam giác BMD (c - g - c)
=> góc BMC = góc BDC (đn)
a) \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\) ; \(AB=AC\)
mà \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\) (kề bù)
\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)
Xét: \(\Delta ABM\)và \(\Delta ACN\)có:
\(AB=AC\)(cmt)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
\(BM=CN\)(gt)
suy ra: \(\Delta ABM=\Delta ACN\)(c.g.c)
\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)
\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)
xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)
suy ra tam giác ABM=tam giác ACN(c.g.c)
suy ra AM=AN
suy ra tam giác AMN cân tại A
b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)
suy ra tam giác AHB= tam giác AKC(ch-gn)
suy ra BH=CK
Tự vẽ hình nhé! (Xem lại đề D thuộc tia đối của tia HA hay AH nha)
a. Xét tam giác ABC vuông tại A có:
\(\widehat{ABC}+\widehat{ACB}=90^0\) (2 góc nhọn phụ nhau)
Mà \(\widehat{ABC}=60^0\Rightarrow\widehat{ACB}=30^0\)
Vì \(\widehat{ACB}< \widehat{ABC}\) (300 < 600) nên AB <AC.
Ta có:
HB2=AB2-AH2 (định lý Pytago trong tam giác ABH vuông tại H)
HC2=AC2-AH2 (định lý Pytago trong tam giác ACH vuông tại H)
Mà AB <AC (cmt) => HB < HC.
b. Xét tam giác AHC vuông tại H và tam giác DHC vuông tại H có:
AH = DH (gt)
HC là cạnh chung.
=> Tam giác AHC = tam giác DHC (2 cạnh góc vuông)
c. Tam giác AHC = tam giác DHC => \(\widehat{HAC}=\widehat{HDC}\)
Xét tam giác BAH vuông tại H và tam giác BDH vuông tại H, ta có:
AH=DH (gt)
BH là cạnh chung.
=> tam giác BAH = tam giác BDH (2 cạnh góc vuông)
=> \(\widehat{BAH}=\widehat{BDH}\) \
Ta lại có:
\(\widehat{BAH}+\widehat{HAC}=\widehat{BAC}\)
\(\widehat{BDH}+\widehat{HDC}=\widehat{BDC}\)
Mà \(\widehat{BAH}=\widehat{BDH};\widehat{HAC}=\widehat{HDC}\) (cmt)
=> \(\widehat{BDC}=\widehat{BAC}=90^0\)
Câu hỏi của Phùng Thị Giang Thanh - Toán lớp 7 | Học trực tuyến