Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó; ΔACE=ΔAKE
Suy ra: AC=AK
b: Ta có: ΔACE=ΔAKE
nên EC=EK
mà AC=AK
nên AE là đường trung trực của CK
ban tu ve hinh
a) +) tam giac ABE co : ABE+BAE+BEA=180( dinh li tong 3 goc cua 1 tam giac)
ABE+BAE+90=180
ABE+BAE =180-90=90(1)
+) tam giac EBK co : EBK+KEB+BKE=180(dinh li tong 3 goc cua 1 tam giac )
EBK+90+BKE=180
EBK+BKE=90(2)
Vi ABE=EBK(BD la phan giac cua ABC) nen tu (1) va (2) suy ra BAE=BKE
suy ra tam giac BAK can tai B
b)Vi tam giac ABK can tai B nen AB=BK
xet tam giac ABD va tam giac KBD CO :
BD chung
ABD=KBD ( BD la phan giac cua ABC)
AB=AK(cmt)
NEN tam giac ABD= tam giaac KBD (c-g-c) nen AB=BK( 2 canh tuong ung ) ;BAD=BKD(2 goc tuong ung ) ma BAD=90 NEN DKB=90
SUY RA DK vuong goc voi BC
CAC GOC KO CO KI HIEU MU GOC BAN TU THEM VAO
b: Ta có: ΔAIE cân tại A
mà AK là đường phân giác
nên K là trung điểm của EI
hay KE=KI
c: Xét ΔAID và ΔAED có
AI=AE
\(\widehat{IAD}=\widehat{EAD}\)
AD chung
Do đó: ΔAID=ΔAED
Suy ra: \(\widehat{AID}=\widehat{AED}=90^0\)
=>DE⊥AB
mà AC⊥AB
nên DE//AC
vì dùng máy tính nên ko vẽ hình đc thông cảm !!
a) giả thiết
Δ ABC cân tại A
AK là tia đối của AB
BK=BC
KH⊥BC(H∈BC)
KH cắt AC tại E
Kết luận
KH=AC
BE là tia phân giác của góc ABC
b) xét tam giác BAC và tam giác BHK có
\(\widehat{B} \) Chung
KH=BC (gt)
\(\widehat{BAC}=\widehat{BHK}=90\) (gt)
tam giác BAC = tam giác BHK (ch-gn)
=>KH=AC(2 góc tương ứng )
b)Xét Δ KBC có BK=BC(gt)
=> tam giác KBC cân tại B
Mà KH⊥BC=> KH là đường cao
AC⊥AB =>AC⊥KB(K∈AB)=>AC là đường cao
Mà AC giao vs KH tại E
=> E là trực tâm của tam giác
=> BE là đường cao (tc 3 đg cao trong tam giác)
=> BE là giân giác của góc \(\widehat{KBC}\)
=>BE là giân giác của góc \(\widehat{ABC} \) (A∈BK)