Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét tam giác ABD và tam giác EBD có:
góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
BD=BD(chung)
góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét 2 tg vuông BAD và BED có:
BD là cạnh chung
góc ABD = góc EBD (BD là phân giác góc B)
\(\Rightarrow\) \(\Delta\) vuông BAD = \(\Delta\) vuông BED (cạnh huyền - góc nhọn)
\(\Rightarrow\) AB = AE (2 cạnh tương ứng)
b) Xét 2 tg vuông DAF và DEC có:
DA = DE(2 cạnh tương ứng do tg BAD = tg BED)
góc ADF = góc EDC (đối đỉnh)
\(\Rightarrow\) \(\Delta\) vuông DAF = \(\Delta\) vuông DEC (cạnh góc vuông - góc nhọn)
\(\Rightarrow\) DF = DC (2 cạnh tương ứng)
\(\Rightarrow\Delta CDF\) là tg cân
xét tam giác CFB có : CA _|_ FB
FE _|_ BC
FE cắt CA tại D
=> BD _|_ CF (đl)