Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tg vuông ABC và tg vuông HBA có góc B chung nên đồng dạng suy ra AB/HB = AC/HA(1)
Ta lại có M, N lần lượt là tđ của BH, AH => BH = 2MB (2) ; AH = 2AN (3)
Từ (1)(2)(3) => AB/2MB = AC/2AN hay AB/MB = AC/AN (4) mà góc ABM = góc CAN (cùng phụ với góc ACB). Vậy tg ABM đd tg CAN (c-g-c)
b) MN là đường tb của tg ABH => MM // AB mà AB vuông góc AC => MM vuông góc AC. Vậy N là trực tâm của tg AMC => CN vuông góc AM
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔAHB\(\sim\)ΔCHA
b: BM/AN=HB/HA
mà HB/HA=AB/CA
nên BM/AN=AB/CA
Xét ΔABM và ΔCAN có
BM/AN=AB/CA
\(\widehat{ABM}=\widehat{CAN}\)
Do đó: ΔABM\(\sim\)ΔCAN
Xét ΔHAB có
M là trung điểm của AH(gt)
N là trung điểm của BH(gt)
Do đó: MN là đường trung bình của ΔHBA(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AB và \(MN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay MN\(\perp\)AC(đpcm)
Sao ý A nhiều ng bảo ko làm đc nhỉ???
Ta chỉ cần dùng tính chất bắc cầu là ra mà
a: Ta có: H và M đối xứng nhau qua AB
nên AB là đường trung trực của HM
Suy ra: AH=AM(1)
Ta có: H và N đối xứng nhau qua AC
nên AC là đường trung trực của HN
Suy ra: AN=AH(2)
Từ (1) và (2) suy ra AN=AM
c) Do MN song song với AB nên MN vuông góc với AC
Tam giác AMC có 2 đường cao AH, MN suy ra N là trực tâm. Do đó CN vuông góc với AM.
a) Xét \(\Delta AHB\) và \(\Delta CHA\) có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{HAB}=\widehat{HCA}\) do cùng phụ với góc HAC
suy ra: \(\Delta AHB~\Delta CHA\)
\(\Rightarrow\)\(\frac{AH}{CH}=\frac{HB}{HA}\)
\(\Rightarrow\)\(AH^2=HB.CH\)
Quỳnh Giang cảm ơn bạn ;))