K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHEB vuông tại E và ΔCHA vuông tại H có 

\(\widehat{EHB}=\widehat{HCA}\)

Do đó: ΔHEB\(\sim\)ΔCHA

Suy ra: \(\dfrac{HE}{CH}=\dfrac{BH}{AC}\left(1\right)\)

Xét tứ giác AEHF có 

\(\widehat{AFH}=\widehat{AEH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: HE=AF(2)

từ (1) và (2) suy ra \(\dfrac{AF}{CH}=\dfrac{BH}{AC}\)

Đề sai rồi bạn

10 tháng 9 2021

tam giác ABC vuong tại A nhé bạn,mình nhầm

 

7 tháng 9 2017

hinh tu ve

cm: aehf la hinh chu nhat vi co 4 goc vuong

suy ra af=eh

\(\Delta BEHdd\Delta BAC\)

\(\frac{EH}{AC}=\frac{BH}{AB}< =>\frac{EH}{BH}=\frac{AC}{AB}\)

tg_bac dd tg_ahc

\(\frac{AC}{AB}=\frac{CH}{AC}\)

suy ra

\(\frac{AF}{BH}=\frac{CH}{AC}\)(do af=eh)

\(\frac{AF}{CH}=\frac{BH}{AC}\)

7 tháng 9 2017

a. Qua C dung duong thang vuong AC tai C cat NH tai I. De thay tg vuong CAM = tg vuong ICN (AM=CN;goc ACM=goc CIN) =>IC=CA => ACIB la hinh vuong Goi J la trung diem IC. BJ giao NI tai ok De thay BJ // CM => ok la trung diem IH va BK vuong goc IN (Do CM vuong goc IN tai H) => BK vua la duong cao, vua la trung tuyen cua tg BHI =>tg BHIcan tai B =>BH=BI ma ACIB la hinh vuong => BH=BI=BA => ABH can tai B b. De thay tu giac MBIH noi tiep (B=H=ninety) =>goc BIM = goc BHM (cung chan BM) (a million) Mat khac vi HE vuong goc AB => HE // AC => goc EHM = goc ACM (goc dong vi) (2) Hon nua tg AMC = tg BMI => goc BIM = goc ACM (3) Tu (a million), (2), (3) => goc BHM = goc EHM => HM la phan giac goc BHE

23 tháng 6 2017

a, bc^2 = ab^2 +ac^2 

      <=.> (ae+eb)^2   +(af+fc)^2

     <=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC 

<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)

<=>EB^2 +CF^2 + AH ^2  + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF 

<=>EB^2 +CF^2+3 AH^2  (đpcm)

b, cb =2a là thế nào vậy

25 tháng 6 2017

đề bài cho vậy