Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
A B C M D I
a) Xét tam giác ABD và tam giác MBD có:
AB = AM ( gt )
\(\widehat{ABD}=\widehat{DBC}\)( Do BD phân giác )
Cạnh BD chung
=>Tam giác ABD = tam giác MBD ( c.g.c )
b) Vì tam giác ABD = tam giác MBD ( cmt )
=> \(\widehat{BAD}=\widehat{BMD}\)
Mà \(\widehat{BAD}=90^0\)
=> \(\widehat{BAD}=\widehat{BMD}=90^0\)
=> DM vuông góc với BC
d) Gọi AO là tia đối của tia AB
Xét tam giác ABC có:
\(\widehat{OAC}=\widehat{ABC}+\widehat{BCA}\)
=> \(\widehat{OAC}>\widehat{BCA}\) (1)
Ta có: \(\widehat{OAC}+\widehat{BAC}=180^0\)( hai góc kề bù )
\(\widehat{CMD}+\widehat{BMD}=180^0\)( hai góc kề bù )
Mà \(\widehat{BAC}=\widehat{BMD}\)( cmt )
=> \(\widehat{OAC}=\widehat{CMD}\) (2)
Từ (1) và (2) => \(\widehat{CMD}>\widehat{BCA}\)
Xét tam giác MDC có:
\(\widehat{CMD}>\widehat{BCA}\)
Theo quan hệ giữa góc và cạnh đối diện có:
DC > DM
Mà DM > AD ( Do tam giác ABD = tam giác MBD )
=> DC > AD
Vậy DC > AD.
d) Xét tam giác ABI và tam giác MBI có:
AB = AM ( gt )
\(\widehat{ABI}=\widehat{MBI}\)( Do BD phân giác )
BI chung
=> Tam giác ABI = tam giác MBI ( c.g.c )
=> \(\widehat{BIA}=\widehat{BIM}\)
Mà \(\widehat{BIA}+\widehat{BIM}=180^0\)( Hai góc kề bù )
=> \(\widehat{BIA}=\widehat{BIM}=\frac{180^0}{2}=90^0\)
=> BI vuông góc AM (3)
Vì tam giác ABI = tam giác MBI ( cmt )
=> AI = IM (4)
Từ (3) và (4) => BI là trung trực của AM
Mà I thuộc BD
=> BD là đường trung trực của AM ( đpcm )
# Học tốt #
Hình tự vẽ nhé.
a)
Xét \(\Delta ABD\)và \(\Delta MBD\)có:
\(\widehat{A}=\widehat{M}\left(=90^0\right)\)
BD chung
\(\widehat{B_1}=\widehat{B_1}\)(Phân giác \(\widehat{B}\))
\(\Rightarrow\)\(\Delta ABD\)= \(\Delta MBD\)(cạnh huyền - góc nhọn)
b) Xét \(\Delta CDM\)và \(\Delta CNM\)có:
DM = MN (gt)
\(\widehat{DMC}=\widehat{NMC}\left(=90^0\right)\)
MC chung
\(\Rightarrow\Delta CDM=\Delta CNM\)(hai cạnh góc vuông)
\(\Rightarrow DC=NC\)
\(\Rightarrow\Delta DCN\)cân tại C
Có CM là trung tuyến của \(\Delta DCN\)(do DM = MN)
Mà CM và DK lại giao nhau tại điểm E \(\Rightarrow\)E là trọng tâm của tam giác DCN
\(\Rightarrow DE=\frac{2}{3}DK\Rightarrow DE=\frac{2}{3}.21=14\left(cm\right)\)
d) Tạm thời chưa nhớ ra.
A B C D M
Bài làm
a) Xét tam giác ABD và tam giác MBD vuông tại A
Ta có: BD là cạnh chung
góc ABD=gócMBD ( vì BD là tia phân giác của góc ABC )
BA = BM ( cạnh huyền góc nhọn )
=> Tam giác ABD = tam giác MBD ( c.g.c ) ( cạnh huyền góc nhọn ) ( đpcm )
bạn có thể tham khảo Câu hỏi của Vũ Lê Ngọc Liên - Toán lớp 7 - Học toán với OnlineMath
học tốt!!!
câu e đề sai rồi bạn
A B C M D E
( mk vẽ hình tương đối thôi nha, ko chính xác cho lắm ^-^)
a. Ta có: BC=2AB
=> AB=1/2*BC (1)
lại có: M là trung điểm của BC
=> BM=MC=1/2*BC (2)
từ (1),(2) => AB=BM=MC
Xét \(\Delta ABD\)và \(\Delta MBD\) có
AB=BM (cmt)
\(\widehat{ABD}\)=\(\widehat{MBD}\)(BD là tia phân giác \(\widehat{B}\))
BD: cạnh chung
do đó: \(\Delta ABD\)=\(\Delta MBD\)(c-g-c)
b. (vội quá nên mk ghi chữ lun nha)
Vì tam giác ABD=tam giác MBD( cmt câu a)
nên góc A= góc M ( 2 góc tương ứng)
mà góc A=90 độ
nên góc M = 90 độ
hay DM vuông góc với BC
c. Ta có: BM=MC, DM vuông góc với BC
nên DM là đường trung trực của BC
=> DB=DC
do đó tam giác BCD cân tại D
Xét t.giác BMD và t,giác CMD có:
BM=MC (cmt)
DB=DC (cmt)
DM: cạnh chung
do đó : tg BMD= tg CMD (c.c.c)
Suy ra: góc BDM=góc CDM (2 góc tương ứng)
mà góc BDM + góc CDM=góc BDC
nên DM là tia phân giác góc BDC
d. Ta có: BA=BM (cmt)
nên B thuộc đường trung trực của AM (3)
tương tự: DA=DM ( tg ABD= tg MBD)
nên D thuộc đường trung trực của AM (4)
Tư (3),(4) => BD là đương trung trực của AM