Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
\(\Rightarrow BC^2=AB^2+AC^2\Rightarrow\Delta ABC\) vuông tại \(A\)
b) Xét \(\Delta BMK\) và \(\Delta CMK\) có:
\(\widehat{BKM}=\widehat{CKM}=90^0\) (gt)
\(BK=CK\) (gt)
\(KM\) chung
\(\Rightarrow\Delta BKM=\Delta CKM\) (c.g.c) \(\Rightarrow BM=CM\)
Xét \(\Delta ABM\) và \(\Delta DCM\) có:
\(\widehat{A}=\widehat{D}=90^0\)
\(MB=MC\) (đã chứng minh)
\(\widehat{AMB}=\widehat{DMC}\) (hai góc đối đỉnh)
\(\Rightarrow\Delta ABM=\Delta DCM\) (ch-gn) \(\Rightarrow AB=DC\) (hai cạnh tương ứng)
c) Gọi \(AB\cap CD=I\)
Tam giác \(IBC\) có \(\left\{{}\begin{matrix}CA\perp BI\\BD\perp CI\\CA\cap BD=M\end{matrix}\right.\Rightarrow M\) là trực tâm tam giác \(BCI\)
\(\Rightarrow IM\perp BC\) mà \(KM\perp BC\Rightarrow I\in KM\)
Vậy \(AB,CD,KM\) đồng quy tại \(I\)
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
b: Ta có: ΔABD=ΔAED
nên DB=DE
mà DE<DC
nên DB<DC
c: Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
a/ áp dụng định lý py - ta - go vào tam giác ABC vuông tại A có :
AB2 +AC2 = BC2
<=> 62 +AC2 = 102
<=> AC2 = 64
<=> AC=8 (cm )
ta có AB < AC < BC (6 < 8 < 10 )
=> \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\) ( quan hệ giữa góc và cạnh )
b/ xét tam giác CAB và CAD có
CA chung
AB = AD ( vì A là trung điểm của BD )
\(\widehat{CAB}=\widehat{CAD}\)( = 90 độ )
=> tam giác CAB = tam giác CAD ( c - g - c )
=> CB = CD
=> tam giác BCD cân tại C
các câu còn lại mk k biết làm dâu
học tốt
a) Có: Tam giác ABC vuông tại A => AB2+AC2=BC2 (ĐL Pytago) <=> AC2=BC2-AB2 => AC2=102-62
=> AC2=100-36=64 => AC2=82 =>AC=8 (cm)
=> AB<AC<BC => ^BAC>^ABC>^ACB (Quan hệ giữa góc và cạnh đối xứng trong tam giác)
b) ^A=900, A là trung điểm của BD => AC là trung trực của đoạn thẳng BD => CB=CD (Tính chất đường trung trực)
=> Tam giác BCD cân tại C (đpcm)
c) Xét tam giác BCD: A là trung điểm của BD, K là trung điểm của BC, AC giao DK tại M.
=> M là trọng tâm của tam giác BCD => MC=2/3AC (T/c 3 đường trung tuyến) => MC=2/3.8\(\approx\)5,3 (cm)
d) \(\Delta\)ABC=\(\Delta\)ADC (c.g.c) => ^C1=^C2 (2 góc tương ứng) (1)
Điểm Q thuộc trung trực của AC => QA=QC => Tam giác AQC cân tại Q => ^A1=^C1 (2)
Từ (1) và (2) => ^C2=^A1. Mà 2 góc đó nằm ở vị trí so le trong => AQ//BC
Lại có: AQ//BC và A là trung điểm của BD => AQ là đường trung bình của tam giác BCD.
=> Q là trung điểm của DC => BQ là trung tuyến của tam giác BCD. Mà M là trọng tâm của tam giác BCD
=> BQ đi qua điểm M hay 3 điểm B,M,Q thẳng hàng (đpcm) .
a, AB2 + AC2 = BC2 \(\Rightarrow\) AC2 = BC2 - AB2 hay AC 2 = 10 2 - 62 = 64 \(\Rightarrow\)AC2 = \(\sqrt{\left(64^{ }\right)^2}\)\(\Rightarrow\) AC = 8
SO SÁNH : AB < AC < BC ( 6 < 8 < 10 )
b, xét \(\Delta\)ABC ( \(\widehat{BAC}\)= \(90^0_{ }\)) =và \(\Delta\)ADC (\(\widehat{DAC}\)= 90 độ)
AB = AD ( A là trung điểm BD )
AC : cạnh chung
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)ADC ( 2 cạnh góc vuông )
\(\Rightarrow\)BC = DC ( 2 cạnh tương ứng )
\(\Rightarrow\)\(\Delta\)BCD cân
ý c với d mình đang nghĩ đới nhá ^_^