Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔEFC có
CA=CE
FC=BC
AB=EF
Do đó: ΔABC=ΔEFC
a. Xét tam giác BMC và tam giác DMA có
MB=MD(gt) BMC=DMA(đối đỉnh)
MA=MC(vì M là trung điềm AC)
Vậy tam giác BMC = tam giác DMA(c-g-c)
=>MBC=MDA( 2 góc tương ứng)
=> AD // BC
b. Xét tam giác AMB và tam giác CMD có
MA=MC(vì M là trung điềm AC)
AMB=CMD( đối đỉnh)
MB=MD(gt)
Vậy tam giác AMB = tam giác CMD(c-g-c)
=> AB=CD(2 cạnh tương ứng)
mà AB=AC(vì tam giác ABC cân tại A)
=> AC=CD
=> tam giác ACD cân tại C
c. trong tam giác DEB có M là trung điểm của BD( vì MD=MB)
=> EM là đường trung tuyến thứ nhất (1)
mặt khác AC=CE(gt)
MC=1/2 AC (vì M là trung điềm AC)
=> MC= 1/2 CE
Sửa đề: ΔABC vuông tại A
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
vậy: BC=10cm
b) Xét ΔAMC và ΔEMB có
CM=BM(M là trung điểm của BC)
\(\widehat{AMC}=\widehat{BME}\)(hai góc đối đỉnh)
MA=ME(gt)
Do đó: ΔAMC=ΔEMB(c-g-c)
Suy ra: AC=BE(hai cạnh tương ứng)
Xét ΔAMB và ΔEMC có
AM=EM(gt)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔEMC(c-g-c)
Suy ra: \(\widehat{BAM}=\widehat{CEM}\)(hai góc tương ứng)
mà \(\widehat{BAM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong
nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đo: ΔBAD=ΔBED
=>DA=DE
b,c: Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
=>BD vuông góc với FC
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
Do đó: ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>D,E,F thẳng hàng
1) dùng 2 góc đồng vị (góc B với M hoặc góc C với N)
2) cm 2 góc BAE và CAE bằng nhau
suy ra tam giác BAE = tam giác CAE
suy ra AB = AC; EB = EC
nên AE là đường trung trực của BC
suy ra AE vuông góc với BC
cm AI vuông gõ với BC suy ra A,I, E thẳng hàng