Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BAH và tam giác CAH, có:
BH=CH (gt)
góc H1= góc H2= 90 độ -bạn tự vẽ hình nha-
AH là cạnh chung
=> tam giác BAH= tam giác CAH (c.g.c)
=> HB= HC (2 cạnh tương ứng)
b) Do tam giác BAH= tam giác CAH (câu a)
=> góc BAH = góc CAH ( 2 góc tương ứng)
k cho mk nha
chúc bạn hok tốt
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
hình bạn tự vẽ
a/ xét 2 tam giác vuông ABH và ACH,có:
AB=AC(gt),AH chung =>tam giác vuông ABH=tam giác vuông ACH
=>HB=HC(t/ứng)
b/ Vì tam giác vuông BAH=tam giác vuông ACH(cmt) =>\(\widehat{BAH}\)=\(\widehat{CAH}\)(t/ứng)
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}+40^0=90^0\)
=>\(\widehat{ACB}=90^0-40^0=50^0\)
ΔBAH vuông tại H
=>\(\widehat{BAH}+\widehat{B}=90^0\)
=>\(\widehat{BAH}=90^0-40^0=50^0\)
ΔCAH vuông tại H
=>\(\widehat{HAC}+\widehat{C}=90^0\)
=>\(\widehat{HAC}=90^0-\widehat{C}=90^0-50^0=40^0\)