Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cot\widehat{C}=\dfrac{5}{12}\)
\(\sin\widehat{C}=\dfrac{12}{13}\)
\(\cos\widehat{C}=\dfrac{5}{13}\)
ta có:
. \(\hept{\begin{cases}tan\alpha=\frac{sin\alpha}{cos\alpha}\\cot\alpha=\frac{cos\alpha}{sin\alpha}\\tan\alpha\times cot\alpha=1\end{cases}}\)
Pytago ra BC=35
Áp dụng hệ thức lượng ra:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{441}+\frac{1}{784}\Rightarrow AH=\frac{84}{5}\)
AB2=HB.BC→HB=441:35=12.6
HC=BC-HB=35-12.6=22.4
b, Tính theo ct thôi vì biết các cạnh rồi.
c,Theo t/c đường phân giác có
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{BD}{CD}=\frac{3}{4}\Rightarrow\frac{BD+CD}{CD}=\frac{3+4}{4}\Rightarrow\frac{BC}{CD}=\frac{7}{4}\Rightarrow CD=20;BD=15\)
Cot B = \(\frac{AB}{AC}\Rightarrow AB=cotB.AC\)
\(\Rightarrow AB=2,4.5=12\left(cm\right)\)
\(BC^2=AB^2=12^2+5^2=169\)
\(\Rightarrow BC=\sqrt{169}=13cm\)
b) sin C \(\frac{AB}{BC}=\frac{12}{13}\)
cos C = \(\frac{AC}{BC}=\frac{5}{13}\)
tan C = \(\frac{AB}{AC}=\frac{12}{5}\)
cot C = \(\frac{AC}{AB}=\frac{5}{12}\)
Chúc bạn học tốt !!!