Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I M K
a, Xét tam giác vuông MHC có :
\(\widehat{CMH}+\widehat{HCM}=90^o\)
Xét tam giác vuông ABC có:
\(\widehat{HIB}+\widehat{HCM}=90^o\)
\(\Rightarrow\widehat{CMH}=\widehat{HIB}\)
Xét 2 tam giác : KHM và IHB
MH = HB ( gt )
\(\widehat{CMN}=\widehat{HBI}\left(cmt\right)\)
\(\widehat{MKH}=\widehat{HIB}=90^o\)
\(\Rightarrow\Delta KHM=\Delta IHB\)
b, \(\Rightarrow HK=HI\)
Xét 2 tam giác : KHA và IHA
KM = IH ( cm a )
AN chung
\(\widehat{HKA}=\widehat{AIM}=90^o\)
\(\Rightarrow\Delta KHA=\Delta IHA\)
\(\Rightarrow\widehat{KAH}=\widehat{HAI}\)
Vậy : AH là tia phân giác góc BAC
a, xet △ vuong mhc co ∠cmh + ∠hcm = 90 do xet △ vuong abc co ∠hbi + ∠hcm = 90 do suy ra ∠cmh = ∠hbi xet △ BHI va △ MHK co ∠CMH = ∠HBI [c/m tr] HM = BH [gt] ∠BIH = ∠MKH [=90 do] ➩ △ BHI = △ MHK [ch-gn] b, tu a co △bhi = △mhk ➩ ih = kh xet △aih va △akh co ah chung ih = kh [c/m tr] ∠aih = ∠akh [= 90 do] ➩ △aih = △kah [ch-cgv] ➩ ∠iah = ∠kah ➩ ah la p/g cua ∠bac
a) mún c/m I là trực tâm bn chỉ cần c/m 2 đường cao cắt nhau tại 1 điểm thì điểm đó chính là trực tâm !!
457568769
a, Xét △BAH vuông tại H và △CAH vuông tại H
Có: AH là cạnh chung
AB = AC (gt)
=> △BAH = △CAH (ch-cgv)
=> BH = CH (2 cạnh tương ứng)
Mà H nằm giữa B, C
=> H là trung điểm BC
Ta có: BH + CH = BC => BH + BH = 12 => 2BH = 12 => BH = 6 (cm)
Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 = AB2 - BH2
=> AH2 = 102 - 62
=> AH2 = 64
=> AH = 8 (cm)
b, Ta có: MH = MB + BH và HN = HC + CN
Mà BH = HC (cmt) ; MB = CN (gt)
=> MH = HN
Xét △MHA vuông tại H và △NHA vuông tại H
Có: AH là cạnh chung
MH = HN (cmt)
=> △MHA = △NHA (2cgv)
=> HMA = HNA (2 góc tương ứng)
Xét △AMN có: AMN = ANM (cmt) => △AMN cân tại A
c, Xét △MBE vuông tại E và △NCF vuông tại F
Có: EMB = FNC (cmt)
MB = CN (gt)
=> △MBE = △NCF (ch-gn)
=> MBE = NCF (2 góc tương ứng)
d, Vì △MHA = △NHA (cmt) => MAH = NAH (2 góc tương ứng)
=> AH là phân giác của MAN
Ta có: AE + EM = AM và AF + FN = AN
Mà EM = FN (△MBE = △NCF) ; AM = AN (△AMN cân tại A)
=> AE = AF
Xét △EAK vuông tại E và △FAK vuông tại F
Có: AK là cạnh chung
AE = AF (cmt)
=> △EAK = △FAK (ch-cgv)
=> EAK = FAK (2 góc tương ứng)
=> AK là phân giác EAF => AK là phân giác MAN
Mà AH là phân giác của MAN
=> AK ≡ AH
=> 3 điểm A, H, K thẳng hàng