K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

Áp dụng định lý Pi-ta-go ta có:

\(AB^2+AC^2=BC^2\\ \Rightarrow BC=\sqrt{AB^2+AC^2}\\ \Rightarrow BC=\sqrt{12^2+13^2}\\ \Rightarrow BC=\sqrt{313}\left(cm\right)\)

23 tháng 1 2022

155 nhé bạn

23 tháng 1 2022

- Xét tam giác ABC vuông tại A có:

AB2+AC2=BC2 (định lí Py-ta-go)

=>302+AC2=502

=>AC2=502-302=1600

=>AC=40(cm)

17 tháng 1 2019

b xem trong này có nhé https://cunghocvui.com/danh-muc/toan-lop-7

22 tháng 2 2018

Ta có : SABC=AH.BC/2=26AH

    mà          SABC =AB.AC/2=480

=>26AH=480

AH=240/13

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do đó; ΔBAD=ΔBED

=>DA=DE và góc BED=90 độ

=>DE vuông góc với BC

b: AH vuông góc với BC 

DE vuông góc với BC

Do đó: AH//DE

19 tháng 8 2018

Hình vẽ:

C B A H M

Tam giác ABC vuông tại A có AM là trung tuyến => CM = MB = AM = 13 cm

Áp dụng ĐL Pi ta go trong tam giác vuông AMH có: MH= AM- AH= 13- 12= 25 cm => MH = \(\sqrt{25}\)= 5 cm

Ta có:

BH= AB- AH2; CH= AC- AH

Mà AB < AC

=> BH < CH => 2.BH < BH + CH = BC => BH < \(\frac{BC}{2}\)= BM

=> H nằm giữa B và M 

=> BH = BM - MH = 13 - 5 = 8 cm

Áp dụng ĐL Pi ta go trong tam giác AHB => AB = \(\sqrt{AH^2+BH^2}\)\(\sqrt{12^2+8^2}\)\(\sqrt{208}\)cm.

8 tháng 2 2021

A B C 16 12 H

1) Có \(\Delta ABC\) vuông 

=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)

2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :

 AB +  AC2 =  BC2

=> 162 + 122 = BC2

=> 400            = BC2

=> BC             = 20 (cm)

Ta có :  S\(\Delta ABC\)  =  S\(\Delta ABH\)  +  S\(\Delta ACH\)

=>  \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)

=>  \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)

=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)

=> \(\dfrac{AH.BC}{2}\)               =  96

=> AH                         =  96 .  \(\dfrac{2}{BC}\) = 96 .  \(\dfrac{2}{20}\) = 9.6 (cm)

3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :

    BH2 = AB2 - AH2

=>BH= 162 - 9.62 = 163.84

=> BH = 12.8 (cm)

=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)

 

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

9 tháng 2 2021

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...