Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b xem trong này có nhé https://cunghocvui.com/danh-muc/toan-lop-7
Ta có : SABC=AH.BC/2=26AH
mà SABC =AB.AC/2=480
=>26AH=480
AH=240/13
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó; ΔBAD=ΔBED
=>DA=DE và góc BED=90 độ
=>DE vuông góc với BC
b: AH vuông góc với BC
DE vuông góc với BC
Do đó: AH//DE
Hình vẽ:
Tam giác ABC vuông tại A có AM là trung tuyến => CM = MB = AM = 13 cm
Áp dụng ĐL Pi ta go trong tam giác vuông AMH có: MH2 = AM2 - AH2 = 132 - 122 = 25 cm => MH = \(\sqrt{25}\)= 5 cm
Ta có:
BH2 = AB2 - AH2; CH2 = AC2 - AH2
Mà AB < AC
=> BH < CH => 2.BH < BH + CH = BC => BH < \(\frac{BC}{2}\)= BM
=> H nằm giữa B và M
=> BH = BM - MH = 13 - 5 = 8 cm
Áp dụng ĐL Pi ta go trong tam giác AHB => AB = \(\sqrt{AH^2+BH^2}\)= \(\sqrt{12^2+8^2}\)= \(\sqrt{208}\)cm.
1) Có \(\Delta ABC\) vuông
=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)
2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : S\(\Delta ABC\) = S\(\Delta ABH\) + S\(\Delta ACH\)
=> \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)
=> \(\dfrac{AH.BC}{2}\) = 96
=> AH = 96 . \(\dfrac{2}{BC}\) = 96 . \(\dfrac{2}{20}\) = 9.6 (cm)
3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
Áp dụng định lý Pi-ta-go ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow BC=\sqrt{AB^2+AC^2}\\ \Rightarrow BC=\sqrt{12^2+13^2}\\ \Rightarrow BC=\sqrt{313}\left(cm\right)\)
155 nhé bạn