K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: \(\dfrac{AD}{6}=\dfrac{1}{2}\)

hay AD=3(cm)

Vậy: AD=3cm

2 tháng 5 2018

Bạn nào biết giúp mình với ạ! Mk sắp thi rồi!!

30 tháng 12 2021

a: Xét ΔHAB có 

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB

hay ABNM là hình thang

5 tháng 5 2017

Ai làm câu này liền đi​

làm đc bao nhiêu cũng đc giúp mình với

3 tháng 3 2020

A B C M N H E F O d

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=26\left(cm\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{120}{13}\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta đươc:

\(AH^2+HB^2=AB^2\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\frac{50}{13}\left(cm\right)\)

b) Xét tam giác OMN có BC//MN (gt)

\(\Rightarrow\frac{OM}{OC}=\frac{ON}{OB}\)( định lý Ta-let) (1)

Xét tam giác OME có ME// NC ( vì ME//AC )

\(\Rightarrow\frac{OE}{ON}=\frac{OM}{OC}\)( định lý Ta-let) (2)

\(\Rightarrow\frac{ON}{OB}=\frac{OE}{ON}\)

\(\Rightarrow ON^2=OE.OB\left(đpcm\right)\)