Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BAD và tam giác BED có :
BA = BE ( gt )
^ABD = ^EBD ( BD là tia phân giác của ^B )
BD chung
=> Tam giác BAD = tam giác BED ( c.g.c )
=> AD = ED ( hai cạnh tương ứng )
=> ^BDA = ^BDE ( hai góc tương ứng )
mà ^BDA + ^BDE = 1800 ( kề bù )
=> ^BDA = ^BDE = 1800/2 = 900
=> BD vuông góc với AE ( đpcm )
b) BD vuông góc với AE
=> D thuộc AE
Lại có AD = ED
=> BD là đường trung trực của AE
Giải
a) Xét 2 tam giác BAD và tam giác BED có:
BD là cạnh chung
BA = BE ( gt )
Góc ABD = góc EBD ( gt )
Do đó : Tam giác BAD = tam giác BED (c.g.c )
=> góc BAD = góc BED ( hai cạnh tương ứng )
=> BED = 90° => DE vuông góc với BE
b) Theo câu a ta có : Tam giác BAD = tam giác BED => DA = DE nên D thuộc đừng trung trực của AE
Mà BA = BE ( gt ) nên B thuộc đừng trung trực của AE
Vậy BD là đường trung trực của AE
Học tốt
a)
ΔABDΔABD và ΔEBDΔEBD có:
BA = BE (gt)
ˆB1=ˆB2B1^=B2^ (BD là tia phân giác góc B)
BD là cạnh chung
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (c.g.c)
⇒⇒ ˆBAD=ˆBEDBAD^=BED^ (hai góc tương ứng)
mà ˆBADBAD^ =900=900
⇒⇒ˆBEDBED^ =900=900
⇒⇒ DE ⊥⊥ BE
b) ΔABIΔABI và ΔEBIΔEBI có:
BA = BE (gt)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
=>AD=ED
b: BA=BE
DA=DE
=>BD là trung trực của AE
AD=DE
DE<DC
=>AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
Xét tam giác BDA và tam giác BDE có
BA=BE (gt)
góc ABD=góc EBD
BD:chung
=> tam giác BDA=tam giác BDE (c.g.c)
=> góc BAD=góc BED
Mà góc BAD=90 độ nên góc BED=90 độ
=> DE vuông góc với BE
b) Vì BA=BE nên tam giác ABE cân tại A
Tam giác ABE cân tại A có BD là đường phân giác nên đồng thời là đường trung trực của cạnh AE
A: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=90 độ
b: BA=BE
DA=DE
=>BD là trung trực của AE
DA=DE
DE<DC
=>DA<DC
a: Xét ΔBAE có BA=BE
nên ΔBAE cân tại B
b: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
mà BA=BE
nên BD là trung trực của AE
em gửi bài qua fb thầy dh giải giúp cho, tìm fb của thầy qua sđt: 0975705122. Thầy Thành