Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\widehat{IAB}=180^0-\widehat{BAH}=180^0-\left(90^0-\widehat{ABC}\right)=90^0+\widehat{ABC}=\widehat{EBC}\)
Xét \(\Delta\)ABI và \(\Delta\)BEC có :
AI = BC(gt)
\(\widehat{IAB}=\widehat{EBC}\)(cmt)
AB = BE(tam giác ABE vuông cân tại B)
=> \(\Delta\)ABI = \(\Delta\)BEC (c-g-c)
b) \(\Delta\)ABI = \(\Delta\)BEC (câu a) nên : BI = EC(hai cạnh tương ứng)
\(\widehat{ECB}=\widehat{BIA}\)hay \(\widehat{ECB}=\widehat{BIH}\)
Gọi giao điểm của CE với AB là M
Ta có : \(\widehat{MCB}+\widehat{MBC}=\widehat{BIH}+\widehat{IBH}=90^0\Rightarrow\widehat{BMC}=90^0\)
Do đó \(CE\perp BI\)
Gọi giao điểm của BF và AC là N
Ta có : \(\widehat{NCB}+\widehat{NBC}=\widehat{CIH}+\widehat{ICH}=90^0\Rightarrow\widehat{BNC}=90^0\)
=> BF vuông góc với CI
c) \(\Delta\)BIC có : AH,CE,BF là ba đường cao => AH,CE,BF đồng quy
–12 –12 –12 –10 –10 –10 –8 –8 –8 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 8 8 8 10 10 10 12 12 12 14 14 14 16 16 16 18 18 18 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 0 0 0 A A A B B B C C C I I I H H H E E E F F F M M M
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
FB=EC
FC=EB
BC chung
DO đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔBIC cân tại I
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,M,I thẳng hàng
a) AE//MC,ME//AC=>AEMC là hình bình hành
=>ME=AC
CM tương tự có ADMB là hình bình hành=>AB=MD
gọi P,Q lần lượt là giao của ABvới ME và AC với MD
Có AP//MQ,AQ//MP=>APMQ là hình bình hành=>góc BAC=góc DME
Chứng minh được tam giác ABC=tam giác MDE(c.g.c)
b)AEMC,ADMB là hình bình hành=>AM cắt CE tại trung điểm của mỗi đường,AM cắt BD tại trung điểm của mỗi đường
=>AM,BD,CE đồng quy(đpcm)
Bài 1:
a)Có góc EAC=90 độ+góc BAC=góc FAB
tam giác EAC=tam giác BAF do EA=AB(tam giác AEB vuông cân tại A)
AF=AC(tam giác AFC vuông cân tại A),góc EAB=góc BAF
=>EC=BF(đpcm)
b)Trên tia đối tia MA,lấy điểm N sao cho M là trung điểm của AN
=>AM=AN/2
Có M là trung điểm của BC=>ABNC là hình bình hành
=>NC=AB=AE,BN=AC=AF,góc BAC+góc ACN=180 độ(AB//NC)
Mà góc EAF+góc BAC=180 độ
=>góc EAF=góc ACN
tam giác EAF=tam giác NCA(do EA=NC,AF=CA,góc EAF=góc NCA)
=>góc NAC=góc EFA và AN=EF
Mà AM=AN/2=>AM=EF/2
Gọi H là giao của AM và EF
Có góc NAC+góc HAF=90.Mà góc NAC=góc EFA
=>góc HAF+góc HFA=90 độ=>góc AHF =90 độ
=>AM vuông góc với EF tại H
a) Ta có: \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\widehat{BEF}=\widehat{CAF}+\widehat{BAC}=90^0+\widehat{BAC}\)
suy ra: \(\widehat{EAC}=\widehat{BAF}\)
Xét \(\Delta EAC\)và \(\Delta BAF\)có:
\(EA=BA\) (gt)
\(\widehat{EAC}=\widehat{BAF}\) (cmt)
\(AC=AF\) (gt)
suy ra: \(\Delta EAC=\Delta BAF\) (c.g.c)
\(\Rightarrow\)\(EC=BF\); \(\widehat{ACE}=\widehat{AFB}\) (1)
Gọi O là giao điểm của AC và BF; K là giao điểm của EC và BF
\(\Rightarrow\)\(\widehat{AOF}=\widehat{KOC}\) (2)
\(\Delta AOF\)\(\perp\)\(A\)
\(\Rightarrow\)\(\widehat{AFO}+\widehat{FOA}=90^0\) (3)
Từ (1), (2) và (3) suy ra:
\(\widehat{KOC}+\widehat{OCK}=90^0\)
\(\Rightarrow\)\(\widehat{OKC}=90^0\)
\(\Rightarrow\)\(BF\)\(\perp\)\(CE\)
3.1.Bài tập 1: 62- BTNC&MSCĐ/117)
Tam giác ABC và tam giác A'B'C' có AB=A'B', AC= A'C'. Hai góc A và A'bù nhau. Vẽ trung tuyến AM rồi kéo dài một đoạn MD=MA.
Chứng minh: a. góc ABD = góc A'
b. AM = 1/2 B'C'
( Bạn giải bài trên là có đáp án bài dưới)
Ta thấy: ABC và EAF có hai cặp cạnh bằng nhau và một cặp góc xen giữa chúng bù nhau nên trung tuyến AM = EF
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔAFH vuông tại F và ΔAEH vuông tại E có
AH chung
AF=AE
Do đó: ΔAFH=ΔAEH
Suy ra: \(\widehat{FAH}=\widehat{EAH}\)
hay AH là tia phân giác của góc BAC
mà ΔABC cân tại A
nên AH là đường cao
Xét tg ABE vuông tại E và tg ACF vuông tại F, có:
AB=AC(tg ABC cân tại A)
góc E=góc F(=90 độ)
góc BAE chung.
=>tg ABE=tg ACF.
b, Xét tg AHF vuông tại F và ΔAEH vuông tại E có
AH chung.
AF=AE(2 cạnh tương ứng)
góc E=góc F.
=>tg AHF=tg AEH.
=>góc FAH=góc EAH.
=>AH là cạnh chung của 2 góc. Vậy AH là tia phân giác của góc BAC.
b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có
BC chung
\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)