K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
21 tháng 7 2020

a) chứng minh tam giác ABI = tam giác BEC

23 tháng 7 2020

a) Ta có : \(\widehat{IAB}=180^0-\widehat{BAH}=180^0-\left(90^0-\widehat{ABC}\right)=90^0+\widehat{ABC}=\widehat{EBC}\)

Xét \(\Delta\)ABI và \(\Delta\)BEC có :

AI = BC(gt)

\(\widehat{IAB}=\widehat{EBC}\)(cmt)

AB = BE(tam giác ABE vuông cân tại B)

=> \(\Delta\)ABI = \(\Delta\)BEC (c-g-c)

b) \(\Delta\)ABI  = \(\Delta\)BEC (câu a) nên : BI = EC(hai cạnh tương ứng)

\(\widehat{ECB}=\widehat{BIA}\)hay \(\widehat{ECB}=\widehat{BIH}\)

Gọi giao điểm của CE với AB là M

Ta có : \(\widehat{MCB}+\widehat{MBC}=\widehat{BIH}+\widehat{IBH}=90^0\Rightarrow\widehat{BMC}=90^0\)

Do đó \(CE\perp BI\)

Gọi giao điểm của BF và AC là N

Ta có : \(\widehat{NCB}+\widehat{NBC}=\widehat{CIH}+\widehat{ICH}=90^0\Rightarrow\widehat{BNC}=90^0\)

=> BF vuông góc với CI

c) \(\Delta\)BIC có : AH,CE,BF là ba đường cao => AH,CE,BF đồng quy

–12 –12 –12 –10 –10 –10 –8 –8 –8 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 8 8 8 10 10 10 12 12 12 14 14 14 16 16 16 18 18 18 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 0 0 0 A A A B B B C C C I I I H H H E E E F F F M M M

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có

FB=EC

FC=EB

BC chung

DO đó: ΔFBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔBIC cân tại I

d: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,M,I thẳng hàng

28 tháng 7 2016

a) AE//MC,ME//AC=>AEMC là hình bình hành 
=>ME=AC 
CM tương tự có ADMB là hình bình hành=>AB=MD 
gọi P,Q lần lượt là giao của ABvới ME và AC với MD 
Có AP//MQ,AQ//MP=>APMQ là hình bình hành=>góc BAC=góc DME 
Chứng minh được tam giác ABC=tam giác MDE(c.g.c) 
b)AEMC,ADMB là hình bình hành=>AM cắt CE tại trung điểm của mỗi đường,AM cắt BD tại trung điểm của mỗi đường 
=>AM,BD,CE đồng quy(đpcm) 
Bài 1: 
a)Có góc EAC=90 độ+góc BAC=góc FAB 
tam giác EAC=tam giác BAF do EA=AB(tam giác AEB vuông cân tại A) 
AF=AC(tam giác AFC vuông cân tại A),góc EAB=góc BAF 
=>EC=BF(đpcm) 
b)Trên tia đối tia MA,lấy điểm N sao cho M là trung điểm của AN 
=>AM=AN/2 
Có M là trung điểm của BC=>ABNC là hình bình hành 
=>NC=AB=AE,BN=AC=AF,góc BAC+góc ACN=180 độ(AB//NC) 
Mà góc EAF+góc BAC=180 độ 
=>góc EAF=góc ACN 
tam giác EAF=tam giác NCA(do EA=NC,AF=CA,góc EAF=góc NCA) 
=>góc NAC=góc EFA và AN=EF 
Mà AM=AN/2=>AM=EF/2 
Gọi H là giao của AM và EF 
Có góc NAC+góc HAF=90.Mà góc NAC=góc EFA 
=>góc HAF+góc HFA=90 độ=>góc AHF =90 độ 
=>AM vuông góc với EF tại H

10 tháng 2 2018

a)   Ta có:    \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)

                 \(\widehat{BEF}=\widehat{CAF}+\widehat{BAC}=90^0+\widehat{BAC}\)

suy ra:    \(\widehat{EAC}=\widehat{BAF}\)

Xét    \(\Delta EAC\)và     \(\Delta BAF\)có:

 \(EA=BA\)  (gt)

 \(\widehat{EAC}=\widehat{BAF}\)  (cmt)

 \(AC=AF\) (gt)

suy ra:   \(\Delta EAC=\Delta BAF\)  (c.g.c)

\(\Rightarrow\)\(EC=BF\);     \(\widehat{ACE}=\widehat{AFB}\) (1)

Gọi    O  là giao điểm của  AC  và   BF;     K  là giao điểm của  EC  và   BF

\(\Rightarrow\)\(\widehat{AOF}=\widehat{KOC}\)   (2)

\(\Delta AOF\)\(\perp\)\(A\)

\(\Rightarrow\)\(\widehat{AFO}+\widehat{FOA}=90^0\)   (3)

Từ (1), (2) và (3) suy ra:

      \(\widehat{KOC}+\widehat{OCK}=90^0\)

\(\Rightarrow\)\(\widehat{OKC}=90^0\)

\(\Rightarrow\)\(BF\)\(\perp\)\(CE\)

29 tháng 7 2018

3.1.Bài tập 1: 62- BTNC&MSCĐ/117)

  Tam giác ABC và tam giác A'B'C' có AB=A'B', AC= A'C'. Hai góc A và A'bù nhau. Vẽ trung tuyến AM rồi kéo dài một đoạn MD=MA.

Chứng minh: a.  góc ABD = góc A'

                      b. AM =  1/2 B'C'

( Bạn giải bài trên là có đáp án bài dưới)

Ta thấy: ABC và EAF có hai cặp cạnh bằng nhau và một cặp góc xen giữa chúng bù nhau nên trung tuyến AM = EF

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Xét ΔAFH vuông tại F và ΔAEH vuông tại E có

AH chung

AF=AE

Do đó: ΔAFH=ΔAEH

Suy ra: \(\widehat{FAH}=\widehat{EAH}\)

hay AH là tia phân giác của góc BAC

mà ΔABC cân tại A

nên AH là đường cao

16 tháng 3 2022

Xét tg ABE vuông tại E và tg ACF vuông tại F, có:

AB=AC(tg ABC cân tại A)

góc E=góc F(=90 độ)

góc BAE chung.

=>tg ABE=tg ACF.

 b, Xét tg AHF vuông tại F và ΔAEH vuông tại E có

AH chung.

AF=AE(2 cạnh tương ứng)

góc E=góc F.

=>tg AHF=tg AEH.

=>góc FAH=góc EAH.

=>AH là cạnh chung của 2 góc. Vậy AH là tia phân giác của góc BAC.

 

b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có 

BC chung

\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)