Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác abc vuông tại a, suy ra trung tuyến am ứng với cạnh huyền bc bằng 1/2 bc và = 5cm
b) tứ giác adme có â = 90o; d^ = 90o; ê = 90o => adme là hình chữ nhật
HT
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b; XétΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
ΔABC vuông tại A có AM là trung tuyến
nên AM=BC/2=BM=CM
Xét tứ giác AMBI có
D là trung điểm chung của AB và MI
Do đó: AMBI là hình bình hành
mà MA=MB
nên AMBI là hình thoi
c: Để AMBI là hình vuông thì \(\widehat{AMB}=90^0\)
=>AM\(\perp\)BC
Xét ΔABC có
AM là đường cao, là đường trung tuyến
Do đó: ΔABC cân tại A
=>AB=AC
https://coccoc.com/search?query=cho+tam+gi%C3%A1c+abc+vu%C3%B4ng+t%E1%BA%A1i+a+am+l%C3%A0+trung+tuy%E1%BA%BFn
Theo link nàyyy
a, ta có E là điểm đối xứng với M qua D
=> me vuông góc vs md(t/c đối xứng)
xét tứ giác admn có
góc dan=90 độ
góc anm =90 độ
góc adm = 90 độ (d thuộc me)
=>tứ giác admn laf hcn
b,ta có d là trung điểm của ab
=>da=db(1)
lại có E là điểm đối xứng với M qua D
=> md=de(2)
từ 1 và 2 => từ giác aebm là hbh(3)
mà từ cma có me vuông góc vs md(t/c đối xứng)(4)
từ 3 và 4
=> từ giác aebm là hthoi
c, từ cmb có aebm là hthoi
=> ae=bm(t/c hthoi)
mà bm = cm =>ae=cm(1)
lại có da vuông góc cs me (t/c đối xứng), da vuông góc vs ac ( ab vuông góc vs ac, d thuộc ab)
=>me // ac (2)
từ 1 và 2 => tứ giác AEMC là hình bình hành
tcks cho nhé
a) Xét tứ giác AMIN có:
∠(MAN) = ∠(ANI) = ∠(IMA) = 90o
⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).
b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2
do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến
⇒ NA = NC.
Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành
Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.
c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)
= 252 – 202 ⇒ AB = √225 = 15 (cm)
Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)
d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC
⇒ H là trung điểm của CK hay KH = HC (1)
Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)
Do đó K là trung điểm của DH hay DK = KH (2)
Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.