Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ADBK có
E là trung điểm của AB
E là trung điểm của DK
Do đó: ADBK là hình bình hành
mà DA=DB
nên ADBK là hình thoi
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên AM=BM=CM=BC/2
Xét tứ giác AMBE có
D là trung điểm của đường chéo AB
D là trung điểm của đường chéo ME
Do đó: AMBE là hình bình hành
mà AM=BM
nên AMBE là hình thoi
a: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến ứng với cạnh huyền BC
nên \(AD=BD=CD=\dfrac{BC}{2}\)
Xét tứ giác ADBK có
E là trung điểm của đường chéo AB
E là trung điểm của đường chéo DK
Do đó: ADBK là hình bình hành
mà DA=DB
nên ADBK là hình thoi
Suy ra: K đối xứng với D qua AB
b: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của BC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//AC và \(DE=\dfrac{AC}{2}\)
mà \(DE=\dfrac{DK}{2}\)
nên DK//AC và DK=AC
hay AKDC là hình bình hành
Đây không phải câu hỏi linh tinh nha các bạn:
Thay mặt người phân phối chương trình xin tặng chương trình học online số 1 Việt Nam. Sự kiện bắt đầu từ ngày 28/10 đến 1/11
Xin chào các thành viên đang online trên trang. Sự kiện khuyến mãi được tài trợ 500 suất áo chiếc áo đá bóng Việt Nam.Mong tất cả mọi người đã xem vào truy cập sau để nhận thưởng khi xem có 1 bản đăng kí nhận miễn phí : Thời gian có hạn tặng mọi người đã tham gia tích cực -> Không tin các bạn có thể hỏi các CTV nha mình chỉ có quyền thông báo :
Copy cái này hoặc gõ :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
mn
a) Ta có MB = MC, DB = DA
⇒ MD là đường trung bình của ΔABC
⇒ MD // AC
Mà AC ⊥ AB
⇒ MD ⊥ AB.
Mà D là trung điểm ME
⇒ AB là đường trung trực của ME
⇒ E đối xứng với M qua AB.
b) + MD là đường trung bình của ΔABC
⇒ AC = 2MD.
E đối xứng với M qua D
⇒ D là trung điểm EM
⇒ EM = 2.MD
⇒ AC = EM.
Lại có AC // EM
⇒ Tứ giác AEMC là hình bình hành.
+ Tứ giác AEBM là hình bình hành vì có các đường chéo cắt nhau tại trung điểm của mỗi đường.
Hình bình hành AEBM lại có AB ⊥ EM nên là hình thoi.
c) Ta có: BC = 4cm ⇒ BM = 2cm
Chu vi hình thoi AEBM bằng 4.BM = 4.2 = 8cm
d)- Cách 1:
Hình thoi AEBM là hình vuông ⇔ AB = EM ⇔ AB = AC
Vậy nếu ABC vuông có thêm điều kiện AB = AC (tức tam giác ABC vuông cân tại A) thì AEBM là hình vuông.
- Cách 2:
Hình thoi AEBM là hình vuông ⇔ AM ⊥ BM
⇔ ΔABC có trung tuyến AM là đường cao
⇔ ΔABC cân tại A.
Vậy nếu ΔABC vuông có thêm điều kiện cân tại A thì AEBM là hình vuông.
a: Xét tứ giác ADCE có
I là trung điểm của AC
I là trung điểm của DE
Do đó: ADCE là hình bình hành
mà AD=CD
nên ADCE là hình thoi
a) AM là trung tuyến (gt). => M là trung điểm của BC.
=> BM = MC = \(\dfrac{1}{2}\) BC.
Xét tứ giác AMBN:
I là trung điểm của AB (gt).
I là trung điểm của NM (N là điểm đối xứng với M qua I).
=> Tứ giác AMBN là hình bình hành (dhnb).
=> AN = BM và AN // BM (Tính chất hình bình hành).
Mà BM = MC (cmt).
=> AN = MC.
Xét tứ giác ANMC:
AN = MC (cmt).
AN // MC (AN // BM).
=> Tứ giác ANMC là hình bình hành (dhnb).
b) Xét tam giác ABC vuông tại A:
AM là trung tuyến (gt).
=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).
Mà BM = MC = \(\dfrac{1}{2}\) BC (cmt).
=> AM = BM = MC = \(\dfrac{1}{2}\) BC.
Xét hình bình hành AMBN: AM = BM (cmt).
=> Tứ giác AMBN là hình thoi (dhnb).
c) Tứ giác ANMC là hình bình hành (cmt).
=> NM = AC (Tính chất hình bình hành).
Mà AC = 6 cm (gt).
=> NM = AC = 6 cm.
\(S_{AMBN}=\dfrac{1}{2}.AB.NM=\dfrac{1}{2}.4.6=12\left(cm^2\right).\)
d) Tứ giác AMBN là hình vuông (gt).
=> \(\widehat{AMB}=90^o\) (Tính chất hình vuông).
=> \(AM\perp BC.\)
Xét tam giác ABC vuông tại A:
AM là trung tuyến (gt).
AM là đường cao \(\left(AM\perp BC\right).\)
=> Tam giác vuông ABC vuông cân tại A.
1: BC=5cm
Xét ΔABC có
D là trung điểm của AB
M là trung điểm của BC
Do đó: DM là đường trung bình
=>DM=AC/2=2(cm)
2: Xét tứ giác ACME có
ME//AC
ME=AC
Do đó: ACME là hình bình hành
Xét tứ giác AEBM có
D là trung điểm của ME
D là trung điểm của AB
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi