K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019

hình, giả thiết, kết luận tự vẽ, viết đi

Xét △ABC vuông tại A và △ABD vuông tại A

Có: AC = AD (gt)

    AB là cạnh chung

=> △ABC = △ABD (cgv)

=> ABC = ABD (2 góc tương ứng)

Và BA nằm giữa CBD

=> BA là phân giác của CBD

b, Vì △ABC = △ABD (cmt)

=> BC = BD (2 cạnh tương ứng)

Ta có: CBA + CBM = 180o (2 góc kề bù)

          DBA + DBM = 180o (2 góc kề bù)

Mà ABC = ABD (cmt)

=> CBM = DBM

Xét △CBM và △DBM 

Có: BC = BD (cmt)

    CBM = DBM (cmt)

    BM là cạnh chung

=> △CBM = △DBM (c.g.c)

14 tháng 3 2020

GT:cho tam giác vuông ABC ( A vuông)

AC=AD ; DAC thẳng hàng;D khác C

KL: BA là tia phân giác của góc ABD

tam giác MBC=MBD

a), xét tam giác ABC và tam giác ADB có

AC=AD ( gt)

góc CAB=BAD ( đều = 90 độ )

AB cạnh cung

nên tam giác ABC = tam giác ADC (c-g-c)

mà Tam giác ACB = tam giác ADB

=>góc CBA = DBA ( 2 cạnh tương ứng)

mà ba nằm giữa 

=> ba là tia phân giác của góc CBD

b), xét tam giác MBCvàMBD có

MB cạnh chung

Mặt Khác có góc CBA = DBA ( cm a)

mà góc CBA+ CBM=ABD+DBM

=> góc CBM=DBM

CB=BD (cm a)

nên tam giác MBC=MBD (c-g-c)

14 tháng 3 2020

a) Xét tam giác ABC và tam giác ADB có

AC=AD ( gt)

góc CAB=BAD ( đều = 90 độ )

AB cạnh chung

=> tam giác ABC = tam giác ADC (c-g-c)

Mà Tam giác ACB = tam giác ADB

=>góc CBA = DBA ( 2 cạnh tương ứng)

mà BA nằm giữa 

=> BA là tia phân giác của góc CBD

b), xét tam giác MBC và MBD ,có :

MB cạnh chung

Mặt Khác có góc CBA = DBA ( cm a)

mà góc CBA+ CBM=ABD+DBM

=> góc CBM=DBM   

CB=BD (cm a) 

nên tam giác MBC=MBD (c-g-c)

18 tháng 7 2020

A B C D M 1 2 3 4

A) XÉT \(\Delta BDA\)\(\Delta BCA\)

\(DA=CA\left(GT\right)\)

\(\widehat{BAD}=\widehat{BAC}=90^o\)

AB LÀ CẠNH CHUNG

\(\Rightarrow\Delta BDA=\Delta BCA\left(C-G-G\right)\)

=>\(\widehat{B_1}=\widehat{B_2}\)

=> BA LÀ PHÂN GIÁC CỦA \(\widehat{CBD}\)

B)

TA CÓ

 \(\widehat{B_2}+\widehat{B_4}=180^o\left(KB\right)\)

\(\widehat{B_1}+\widehat{B_3}=180^o\left(KB\right)\)

MÀ \(\widehat{B_1}=\widehat{B_2}\)

\(\Rightarrow\widehat{B_4}=\widehat{B_3}\)

XÉT \(\Delta MBD\)\(\Delta MBC\)

MB LÀ CẠNH CHUNG

\(\widehat{B_4}=\widehat{B_3}\left(CMT\right)\)

\(BD=BC\left(\Delta BDA=\Delta BCA\right)\)

=>\(\Delta MBD\)=\(\Delta MBC\)(C-G-C)

11 tháng 2 2015

Tam giác ABC vuông tại A => tam giác ABD cũng vuông tại D

a) Xét 2 tam giác : ABD và BẮC, ta có:

AD = AC  (GT)

AB LÀ CẠNH CHUNG

vậy tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

b)  Từ tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

=> góc ABD = góc ABC ( 2 góc tương ứng )

=> BD = BC ( 2 CẠNH TƯƠNG ỨNG )

Xét 2 tam giác : MBD và MCB, ta có :

        BM là cạnh chung

        góc ABD = góc ABC

         BD = BC

=> tam giác MBD = TAM GIÁC MCB ( c . g. c)

ko sai đâu

11 tháng 2 2015

Tam giác ABC vuông tại A => tam giác ABD cũng vuông tại D

a) Xét 2 tam giác : ABD và BẮC, ta có:

AD = AC  (GT)

AB LÀ CẠNH CHUNG

vậy tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

b)  Từ tam giác ABD = tam giác ABC  ( 2 cạnh góc vuông bằng nhau )

=> góc ABD = góc ABC ( 2 góc tương ứng )

=> BD = BC ( 2 CẠNH TƯƠNG ỨNG )

Xét 2 tam giác : MBD và MCB, ta có :

        BM là cạnh chung

        góc ABD = góc ABC

         BD = BC

=> tam giác MBD = TAM GIÁC MCB ( c . g. c)

        chính xác, nhớ like nhoa!!!!

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)