K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

25 tháng 12 2018

ta có:AE vuông góc với AC ;AB vuông góc với AF

suy ra: góc AEC=90độ;góc BAF=90đ

mà góc BAC+góc EAB= góc AEC=90đ

góc BAC+góc CAF=góc BAF=90đ

suy ra: góc EAB=góc CAF

xét tam giác AEBvà ACF có:

AE=AC

AB=AF

góc EAB= góc ACF (cmt)

suy ra tam giác AEB=ACF ( C.G.C)

suy ra EB= CF ( cạnh tương ứng)

2 tháng 11 2019

Trần Huyền Trang ???

31 tháng 10 2021

Câu 1:

1. Vì P,QP,Q lần lượt là trung điểm của AB,ACAB,AC nên PQPQ là đường trung bình của tam giác ABCABC ứng với BCBC

⇒PQ=1BC=MC⇒PQ=1BC=MC và PQ∥BCPQ∥BC hay PQ∥MCPQ∥MC

Tứ giác PQCMPQCM có cặp cạnh đối PQPQ và MCMC vừa song song vừa bằng nhau nên PQCMPQCM là hình bình hành.

2.Vì tam giác ABCABC cân tại AA nên đường trung tuyến AMAM đồng thời là đường cao. Hay AM⊥BCAM⊥BC

Tứ giác NAMBNAMB có 2 đường chéo MN,ABMN,AB cắt nhau tại trung điểm PP của mỗi đường nên NAMBNAMB là hình bình hành. 

Hình bình hành NAMBNAMB có 1 góc vuông (ˆAMBAMB^) nên NAMBNAMB là hình vuông.

⇒NB⊥BM⇒NB⊥BM hay NB⊥BCNB⊥BC (đpcm)

3.

Vì PQCMPQCM là hình bình hành nên PM∥QC;PM=QCPM∥QC;PM=QC. Mà P,M,NP,M,N thẳng hàng; PM=PNPM=PN nên PN∥QCPN∥QC và PN=QCPN=QC

Tứ giác PNQCPNQC có cặp cạnh đối PN,QCPN,QC song song và bằng nhau nên PNQCPNQC là hình bình hành. 

Do đó PC∥QN(1)PC∥QN(1)

Mà PC∥QFPC∥QF (2)

Từ (1);(2)⇒Q,N,F(1);(2)⇒Q,N,F thẳng hàng (đpcm)