\(CD^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

A B C E D

Áp dụng định lí Pytago cho các tam giác vuông ta có :

\(CD^2=AC^2+DA^2\)

\(BC^2=AB^2+AC^2\)

\(\Rightarrow CD^2-BC^2=\left(AC^2+AD^2\right)-\left(AB^2+AC^2\right)=AD^2-AB^2\left(1\right)\)

------------

\(ED^2=DA^2+AE^2\)

\(BE^2=AE^2+AB^2\)

\(\Rightarrow ED^2-BE^2=\left(DA^2+AE^2\right)-\left(AE^2+AB^2\right)=AD^2-AB^2\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow CD^2-BC^2=ED^2-BE^2\left(đpcm\right)\)

Chúc bạn học tốt !!!

26 tháng 5 2019

Hình vẽ:

iXpGzDn.png

26 tháng 5 2019

Xét \(\Delta ABC\) và \(\Delta DIC\) có:

\(\widehat{ABC}=\widehat{DIC}=90^0\)

\(\widehat{ACB}\) chung.

\(\Rightarrow\Delta ABC~DIC\left(g.g\right)\)

b.

Hạ \(BK\perp AC\)

Do BI trung tuyến nên \(BI=IA=IC=\frac{AC}{2}=7,5\left(cm\right)\)

\(\Delta KCB~\Delta BCA\left(g.g\right)\Rightarrow BC^2=KC\cdot AB\Rightarrow KC=9,6\left(cm\right)\)

Áp dụng định lý Thales,ta có:

\(\frac{CI}{CK}=\frac{CD}{CB}=\frac{ID}{BK}=\frac{7,5}{9,6}\)

\(\Rightarrow CD=\frac{7,5\cdot CB}{9,6}=\frac{7,5\cdot12}{9,6}=9,375\left(cm\right)\)

Áp dụng định lý Pythagoras vào \(\Delta CBK\),ta có:

\(BK^2+KC^2=BC^2\)

\(\Rightarrow BK^2=BC^2-KC^2=51,84\left(cm\right)\)

\(\Rightarrow BK=7,2\left(cm\right)\)

\(ID=\frac{7,5\cdot BK}{9,6}=\frac{7,5\cdot7,2}{9,6}=5,625\left(cm\right)\)

c.

\(\Delta BDE~IDC\left(g.g\right)\Rightarrowđpcm\)

P/S:Bài j mà kỳ cục zậy ? câu c lại easy hơn nhiều câu b:((

4 tháng 2 2021

a/

Ta có

ED//BC\(\frac{AE}{AB}=\frac{AD}{AC}\Rightarrow\frac{6}{8}=\frac{AD}{20}\Rightarrow AD=\frac{20.6}{8}=15cm\)

b/

Ta có

AE=EF=6 cm (F đối xứng A qua E)

BE=AB-AE=8-6=2 cm

FB=EF-BE=6-2=4 cm

Do ED//BC nên

\(\frac{FB}{EF}=\frac{BI}{ED}\Rightarrow\frac{4}{6}=\frac{BI}{ED}=\frac{2}{3}\)

\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{8}{6}=\frac{4}{3}\)

\(\Rightarrow\frac{BC}{ED}+\frac{BI}{ED}=\frac{4}{3}+\frac{2}{3}=\frac{6}{3}=2\left(dpcm\right)\)

27 tháng 11 2019

Tính diện tích tam giác DEF ạ

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

$DE=DF$ nên tam giác $DEF$ cân tại $D$. Do đó đường trung tuyến $DM$ đồng thời là đường cao và đường phân giác, hay $DM\perp EF$ và $\widehat{EDM}=\widehat{MDF}$

Kẻ $DL\perp BF$.

Dễ thấy $DLMF$ nội tiếp do $\widehat{DLF}=\widehat{DMF}=90^0$

$\Rightarrow \widehat{MLF}=\widehat{MDF}=\widehat{EDM}=90^0-\widehat{DEM}=\widehat{MEC}(1)$

Cũng dễ thấy:

$BELD$ là tứ giác nội tiếp do $\widehat{BED}=\widehat{BLD}=90^0$

$\Rightarrow \widehat{BLE}=\widehat{BDE}=90^0-\widehat{B}=\widehat{BCA}$

$\Rightarrow CELF$ là tứ giác nội tiếp.

$\Rightarrow \widehat{CLF}=\widehat{MEC}(2)$

Từ $(1);(2)\Rightarrow \widehat{MLF}=\widehat{CLF}$ kéo theo $L,C,M$ thẳng hàng. 

Do đó:

$\widehat{BCM}=\widehat{ECL}=\widehat{EFL}=\widehat{EFB}$ (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Hình vẽ:

undefined