K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

20 tháng 4 2017

a) tính BC:

Áp dụng định lí Py-tago vào \(\Delta\)vuông ABC

ta có: BC2=BA2+AC2

       =>BC2= 62+82

     => BC2= 36+64

     =>BC2= 100

     => BC= \(\sqrt{100}\)

    => BC= 10 (cm)

b)c/m \(\Delta\)HAB đồng dạng \(\Delta\)HCA:

Ta có: - tam giác HAB đồng dạng với tam giác ABC ( \(\widehat{B}\)chung)

         - tam giác HAC đồng dạng với tam giác ABC ( \(\widehat{C}\)chung)

     => \(\Delta HAB\)đồng dạng \(\Delta HCA\)( cùng đồng dạng \(\Delta ABC\))

21 tháng 4 2017

có bạn nào giúp minh câu c và d được k. mình k cho

a:

BC=10cm

Xét ΔABC có BD là phân giác

nên DA/DC=BA/BC=6/10=3/5

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: \(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)

nên AH=4,8cm

\(S_{HBA}=\dfrac{HA\cdot HB}{2}=\dfrac{4.8\cdot3.6}{2}=2.4\cdot3.6=8.64\left(cm^2\right)\)

25 tháng 2 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

Vì BD là pg \(\dfrac{DA}{DC}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

b, Xét tam giác ABH và tam giác CBA ta có 

^B _ chung 

^AHB = ^CAB = 900

Vậy tam giác ABH ~ tam giác CBA (g.g) 

=> AB/BC = BH/AB => AB^2 = BH.BC 

c, Ta có \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{48}{2}=24cm^2\)

Vậy \(\dfrac{S_{ABC}}{S_{HBA}}=\left(\dfrac{BC}{AB}\right)^2\Rightarrow\dfrac{24}{S_{HBA}}=\dfrac{100}{36}\Rightarrow S_{HBA}=\dfrac{216}{25}cm^2\)

 

20 tháng 4 2021

hello

20 tháng 4 2021

loooooooooooooooo

9 tháng 5 2017

a)

Xét \(\Delta ABC\)và  \(\Delta HBA\) có:

\(\widehat{A}=\widehat{H}=90^o\)

\(\widehat{B}\)là góc chung

\(\Rightarrow\Delta ABC\)đồng dạng với  \(\Delta HBA\)

\(\RightarrowĐpcm\)

9 tháng 5 2017

b)

Xét \(\Delta ABC\) và  \(\Delta HAC\) có:

\(\widehat{A}=\widehat{H}=90^o\)

\(\widehat{C}\)là góc chung

\(\Rightarrow\Delta ABC\)đồng dạng với  \(\Delta HAC\)

\(\Rightarrow\Delta HBA\)đồng dạng với \(\Delta HAC\) (bắc cầu)

Vì \(\Delta HBA\)đồng dạng với \(\Delta HAC\)

\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\Rightarrowđpcm\)