K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

a)

Xét tam giác ABDvà tam giácEBD

gócA=E=90độ

BD là cạnh chung

GócABD=gócDBE(vì BD là tia phân giác của góc b)

=>tam giác ABD=tam giácEBD(CH-GN)

=>AD=DE(2 cạnh tương ứng)

17 tháng 4 2018

câu c đi bạn

17 tháng 5 2017

A B C E D F 1 2

a) Vì BC2 = 102 = 100

AB2 + AC2 = 62 + 82 = 100

Nên AB2 + AC2 = BC2

Do đó: \(\Delta ABC\) vuông tại A

b) Xét hai tam giác vuông ABD và EBD có:

BD: cạnh huyền chung

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

Vậy: \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)

Suy ra: DA = DE (hai cạnh tương ứng)

c) \(\Delta DAF\) vuông tại A

=> DF > DA (đường vuông góc ngắn hơn đường xiên)

Mà DA = DE

Do đó: DF > DE (đpcm)

d) Xét hai tam giác vuông ABC và EBF có:

AB = EB (\(\Delta ABD=\Delta EBD\))

\(\widehat{B}\): góc chung

Vậy: \(\Delta ABC=\Delta EBF\left(cgv-gn\right)\)

\(\Rightarrow\) BF = BC (hai cạnh tương ứng)

\(\Rightarrow\) \(\Delta BFC\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thời là đường trung trực của FC

Do đó: BD là đường trung trực của đoạn thẳng FC (đpcm).

17 tháng 5 2017

a) Ta có :

\(6^2+8^2=10^2\\ \Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A ( Định lí Pi-ta-go đảo )

b) Xét \(\Delta DBA\)\(\Delta DBE\),có :

Chung cạnh BD

\(\widehat{DBA}=\widehat{DBE}\)( BD là tia phân giác )

\(\Rightarrow\Delta BDA=\Delta BDE\left(ch-gn\right)\\ \Rightarrow DA=DE\)

14 tháng 4 2017

Nguyễn Thanh Xuân uh vui

14 tháng 4 2017

Bạn vào link này nha: https://hoc24.vn/hoi-dap/question/208608.html

27 tháng 4 2017

thực sự là mình không biết vẽ hình

Chứng minh

a, Xét \(\Delta ABE\)\(\Delta DBE\)

BE chung

\(\widehat{BAE}=\widehat{BDE}\) (=1v)

BA = BD (gt)

\(\Rightarrow\Delta ABE=\Delta DBE\left(ch-cgv\right)\)

b, \(\Delta ABE=\Delta DBE\) (câu a )

\(\Rightarrow\widehat{ABE}=\widehat{DBE}\) (hai gó tương ứng)

\(\Rightarrow EA=ED\) (hai cạnh tương ứng) (1)

\(\Delta EDC\) vuông tại D

\(\Rightarrow EC>ED\) (2)

Từ (1) và (2) \(\Rightarrow EC>EA\)

Gọi N là giao điểm của AD và BE

Xét \(\Delta ABN\)\(\Delta DBN\) có :

BA = BD (gt)

\(\widehat{ABN}=\widehat{DBN}\) (c/m trên)

BN chung

\(\Rightarrow\Delta ABN=\Delta DBN\) (c.g.c)

\(\Rightarrow AN=ND\) (hai cạnh tương ứng) (3)

\(\widehat{ANB}=\widehat{DNB}\) (hai góc tương ứng)

\(\widehat{ANB}+\widehat{DNB}=180^O\)

\(\Rightarrow\widehat{ANB}=\widehat{DNB}\) (=1v) (4)

Từ (3) và (4) \(\Rightarrow BE\) là đường trung trực của AD

27 tháng 4 2017

a) xét 2 tam giac vuong ABE va DBE co

AB = BD (gt)

BE canh chung

suy ra: tam giac ABE = tam giac DBE (ch-cgv)

b) tu cau a) Tam giac ABE = tam giac DBE

Suy ra :AE = DE (2 canh tuong ung) (1)_

trong tam giác EDC vuông tại D

suy ra : EC > DE (canh huyen lon hon cach goc vuong ) (2)

Tu (1) va (2) suy ra: EC >EA

Ta co : AE=ED (cmt)

suy ra: E thuộc đường trung trực của AD (3)

ta có:AB=BD(gt)

suy ra: B thuoc duong trung truc AD (4)

tu (3) va (4) suy ra: BE la duong trung truc cua AD


A B C E D M

a: \(BC=\sqrt{4^2+4^2}=4\sqrt{2}\left(cm\right)\)

b: Ta có: ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC