K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAI vuông tại A và ΔBMI vuông tại M có

BI chung

\(\widehat{ABI}=\widehat{MBI}\)

Do đó: ΔBAI=ΔBMI

=>IA=IM

=>ΔIAM cân tại I

 b: Xét ΔBNC có

NM,CA là các đường cao

NM cắt CA tại I

Do đó: I là trực tâm của ΔBNC

=>BI\(\perp\)NC

c: Sửa đề: Chứng minh AM//NC

Xét ΔBMN vuông tại M và ΔBAC vuông tại A có

BM=BA(ΔBMI=ΔBAI)

\(\widehat{MBN}\) chung

Do đó: ΔBMN=ΔBAC

=>BN=BC

Xét ΔBNC có \(\dfrac{BA}{BN}=\dfrac{BM}{BC}\)

nên AM//NC

9 tháng 4 2017

giup toi voi

9 tháng 4 2017

a, xét tam giác vuông AIB và tam giác vuông AIC có:

AI chung

AB=AC =>  tam giác AIB=tam giác AIC (cạnh huyền - cạnh góc vuông)

=>góc BAI=góc CAI (2 goc tương ứng)

=>AI là tia phân giác góc BAC

9 tháng 4 2016

a. Áp dụng định lí Pitago vào tam giác vuông ABC ta có: AB2 +AC2 = BC2 --> 92 +122 =BC2 -->BC2 = 225 -->BC =15 

b. Xét tam giác ABD và tam giác MBD có :

góc BAD = góc BMD = 90 độ

cạnh BD chung

góc ABD = góc MBD ( BD là phân giác ABM )

--> tam giác ABD = MBD ( cạnh huyền góc nhọn )

c. Xét tam giác BEC có : AC vuông góc BE

                                     ME vuông góc BC

                                     AC cắt ME tại D

-----> D là trực tâm --> BD vuông góc CE hay BD là đường cao

Tam giác BEC có BD vừa là phân giác vừa là đường cao --> tam giác BEC cân

a: \(\widehat{HAB}=90^0-60^0=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔAHK và ΔADK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)

=>DK//AB

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABC}\), H∈BC)

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

b) Ta có: ΔABC vuông tại A(gt)

\(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0=30^0\)

Ta có: BE là tia phân giác của \(\widehat{ABC}\)(gt)

\(\Rightarrow\widehat{ABE}=\widehat{CBE}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0\)

Xét ΔEBC có \(\widehat{ECB}=\widehat{EBC}\left(=30^0\right)\)

nên ΔEBC cân tại E(định lí đảo của tam giác cân)

⇒EB=EC

Xét ΔEBH vuông tại H và ΔECH vuông tại H có

EB=EC(cmt)

EH chung

Do đó: ΔEBH=ΔECH(cạnh huyền-cạnh góc vuông)

⇒HB=HC(hai cạnh tương ứng)

c) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE(EA và EC là hai tia đối nhau)

nên \(\widehat{BEC}=\widehat{BAE}+\widehat{ABE}\)(định lí góc ngoài của tam giác)

\(\Rightarrow\widehat{BEC}=90^0+30^0=120^0\)

Ta có: ΔEBH=ΔECH(cmt)

\(\widehat{BEH}=\widehat{CEH}\)(hai góc tương ứng)

\(\widehat{BEH}+\widehat{CEH}=\widehat{BEC}\)(tia EH nằm giữa hai tia EB,EC)

nên \(\widehat{BEH}=\widehat{CEH}=\frac{\widehat{BEC}}{2}=\frac{120^0}{2}=60^0\)

\(\Leftrightarrow\widehat{KEH}=60^0\)

Ta có: HK//BE(gt)

\(\widehat{BEH}=\widehat{KHE}\)(hai góc so le trong)

\(\widehat{BEH}=60^0\)(cmt)

nên \(\widehat{KHE}=60^0\)

Xét ΔKHE có

\(\widehat{KEH}=60^0\)(cmt)

\(\widehat{KHE}=60^0\)(cmt)

Do đó: ΔKHE đều(dấu hiệu nhận biết tam giác đều)

d) Xét ΔAEI vuông tại A có EI là cạnh huyền(EI là cạnh đối diện với \(\widehat{EAI}=90^0\))

nên EI là cạnh lớn nhất trong ΔAEI(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)

hay EI>EA

mà EA=EH(ΔBAE=ΔBHE)

nên IE>EH(đpcm)