Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
tự cm tam giác ABC vuông
=> góc ABC + góc ACB = 90 (đl)
BI là pg của góc ABC => góc IBC = góc ABC : 2
CI là pg của góc ACB => góc ICB = góc ACB : 2
=> góc IBC + góc ICB = (góc ABC + góc ACB) : 2
=> góc IBC + góc ICB = 45
xét tam giác IBC => góc IBC + góc ICB + góc BIC = 180
=> góc BIC = 135
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
a) Vì AM là phân giác của góc BAC
nên góc BAM = CAM
Xét ΔBAM và ΔCAM có:
AB = AC ( giả thiết )
Góc BAM = CAM ( chứng minh trên )
AM cạnh chung.
=> Δ BAM = ΔCAM ( c.g.c )
=> BM = CM ( 2 cạnh tương ứng )
mà M nằm giữa B và C
Do đó M là trung điểm của BC → ĐPCM.
b) Ta có: AB + BE = AE
AC + CF = AF
mà AB = AC ( đề bài ); AE = AF (đề bài)
=> BE = CF.
Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )
Lại có: Góc ABC + CBE = 180 độ (kề bù)
Góc ACB + BCF = 180 độ (kề bù)
=> ABC + CBE = ACB + BCF
=> Góc CBE = BCF.
Xét ΔBCE và ΔCBF có:
BE = CF ( chứng minh trên)
Góc CBE = BCF ( chứng minh trên)
BC cạnh chung ( theo hình vẽ)
=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.
c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM
Xét ΔMBE và ΔMCF có:
MB = MC ( chứng minh ở câu a )
Góc EBM = FCM ( chứng minh trên)
BE = FC ( chứng minh ở câu b)
=> ΔMBE = ΔMCF ( c.g.c )
=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.
d) Xét ΔEMN và ΔFMN có:
EM = FM ( chứng minh ở câu c )
EN = FN ( N là trung điểm EF )
MN chung.
=> ΔEMN = ΔFMN.
=> Góc ENM = FNM (2 góc tương ứng)
Suy ra MN là tia phân giác của góc ENF (1)
Có: góc BAM = CAM
Suy ra AM là tia phân giác của góc BAC (2)
Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.
Do đó A, M, N thẳng hàng → ĐPCM.
CM:a) Xét t/giác ABM và ACM
có: AB = AC (gt)
\(\widehat{BAM}=\widehat{CAM}\) (gt)
AM : chung
=> t/giác ABM = t/giác ACM (c.g.c)
=> BM = CM (2 cạnh t/ứng)
=> M là trung điểm của BC
b) Ta có: AE + AC = EC
AF + AB = FB
mà AE = AF (gt); AB = AC (gt)
=> EC = FB
Xét t/giác BCE và t/giác CBF
có: BC : chung
\(\widehat{BCE}=\widehat{FBC}\) (vì t/giác ABC cân)
EC = FB (cmt)
=> t/giác BCE = t/giác CBF (c.g.c)
c) Xét t/giác BEM và t/giác CFM
có: EB = FC (vì t/giác BCE = t/giác CBF)
\(\widehat{EBM}=\widehat{FCM}\) (vì t/giác BCE = t/giác CBF)
BM = CM (cm câu a)
=> t/giác BEM = t/giác CFM (c.g.c)
=> ME = MF (2 cạnh t/ứng)
d) Xét t/giác AEN và t/giác AFN
có: AE = AF (gt)
EN = FN (gt)
AN : chung
=> t/giác AEN = t/giác AFN (c.c.c)
=> \(\widehat{EAN}=\widehat{MAF}\) (2 góc t/ứng)
=> AN là tia p/giác của góc EAF => \(\widehat{EAN}=\widehat{MAF}=\frac{\widehat{EAF}}{2}\)
AM là tia p/giác của góc BAC => \(\widehat{BAM}=\widehat{CAM}=\frac{\widehat{BAC}}{2}\)
Mà \(\widehat{EAF}=\widehat{BAC}\) (đối đỉnh)
=> \(\widehat{EAN}=\widehat{NAF}=\widehat{BAM}=\widehat{MAC}\)
Ta có: \(\widehat{FAN}+\widehat{NAE}+\widehat{EAB}=180^0\)
hay \(\widehat{BAM}+\widehat{EAB}+\widehat{EAN}=180^0\)
=> A, M, N thẳng hàng
Ta có : tam giác ABC vuông tại A (GT)
suy ra góc BAC = 90
Ta có ME vuông góc BC (GT)
suy ra góc BEM = góc MEC = 90
Ta có : BM là tia phân giác góc ABC (GT)
suy ra góc ABM = góc EBM
Xét tam giác ABM và tam giác EBM có
góc BAC = góc BEM = 90 (CMT)
BM chung
góc ABM = góc EBM (CMT)
suy ra tam giác ABM = tam giác EBM (ch-gn)
suy ra BA =BE ( 2 cạnh tương ứng )
Ta có tam giác ABM = tam giác EBM (CMT)
suy ra MA= ME (2 cạnh tương ứng)
Xét tam giác MEC có :
góc MEC = 90 (CMT)
Mà góc MEC đồi diện cạnh MC
suy ra MC là cạnh huyền (qh giữa góc và cạnh trong 1 tam giác )
suy ra MC > ME
Ta có MA = ME (CMT)
suy ra MC>MA
c)Ta có góc BAC +góc MAF = 180 (2 góc kề bù)
Mà góc BAC = 90 (CMT)
suy ra góc MAF = 90
Xét tam giác MAF và tam giác MEC có
MA =ME(CMT)
góc MAF = góc MEC = 90 (CMT)
AF = CE (GT)
suy ra tam giác MAF = tam giác MEC (c-g-c)
suy ra góc AMF = góc EMC (2 góc tương ứng)
Ta có góc AME + góc EMC = 180 (2 góc kề bù)
Mà góc EMC = góc AMF (CMT)
suy ra góc AME + góc AMF = 180
suy ra F;M;E thẳng hàng