K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có

BE chung

ˆABE=ˆKBEABE^=KBE^

Do đó: ΔABE=ΔKBE

b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K cso

EA=EK

ˆAEM=ˆKECAEM^=KEC^

Do đó:ΔAEM=ΔKEC

Suy ra: EM=EC

c: Xét ΔBMC có BA/AM=BK/KC

nên AK//MC

a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có

BE chung

góc ABE=góc KBE

=>ΔBAE=ΔBKE

b: Xét ΔEAM vuông tại A và ΔEKC vuông tại K có

EA=EK

góc AEM=góc KEC

=>ΔEAM=ΔEKC

=>EM=EC và AM=KC

c: Xét ΔBMC có BA/AM=BK/KC

nên AK//MC

d: BM=BC

Em=EC

=>BE là trung trực của MC

=>B,E,N thẳng hàng

a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔABE=ΔKBE

b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K cso

EA=EK

\(\widehat{AEM}=\widehat{KEC}\)

Do đó:ΔAEM=ΔKEC

Suy ra: EM=EC

c: Xét ΔBMC có BA/AM=BK/KC

nên AK//MC

a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔABE=ΔKBE

b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K có

EA=EK

\(\widehat{AEM}=\widehat{KEC}\)

Do đó: ΔAEM=ΔKEC

Suy ra: EM=EC

c: Xét ΔBMC có BA/AM=BK/KC

nên AK//MC

13 tháng 3 2022

Bạn có thể vẽ hình giúp mình dc ko

 

a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔBAE=ΔBKE

b: ta có: ΔBAE=ΔBKE

=>EA=EK

Xét ΔEAM vuông tại A và ΔEKC vuông tại K có

EA=EK

\(\widehat{AEM}=\widehat{KEC}\)(hai góc đối đỉnh)

Do đó: ΔEAM=ΔEKC

=>EM=EC

c: Ta có: ΔEAM=ΔEKC

=>AM=KC

Ta có: ΔBAE=ΔBKE

=>BA=BK

Xét ΔBMC có \(\dfrac{BA}{AM}=\dfrac{BK}{KC}\)

nên AK//MC

d: Ta có: NM=NC

=>N nằm trên đường trung trực của MC(1)

Ta có: EM=EC

=>E nằm trên đường trung trực của CM(2)

Ta có: BA+AM=BM

BK+KC=BC

mà BA=BK và AM=KC

nên BM=BC

=>B nằm trên đường trung trực của MC(3)

Từ (1),(2),(3) suy ra B,E,N thẳng hàng

26 tháng 6 2017

14 tháng 12 2021

chép mạng (đã đầy lần như thế rồi)

Xét tam giác ABE vuông tại A và  tam giác HBE vuông tại  H ta có

BE = BE ( cạnh chung ) ; góc ABE = góc HBE ( BE là tia phân giác góc B )

--> tam giác ABE = tam giác HBE ( ch = gn )

b ) ta có :

BA = BH ( tm giác ABE = tam giác HBE )

EA = EH ( tam giác ABE = tam giác HBE )

==> BE là đường trung của của AH

Xét tam giác EKA và tam giác ECH  ta có :

AE = EH ( tam giác ABE = tam giác HBE ) ; góc EAK = góc EHC ( =90 ) góc AEK = góc HEC

-->tam giác EAK = tam giác ECH ( g--c--h )

--> EK =EC ( 2 cạnh tương ứng )

d) từ điểm E đến đường thẳng HC tacó :

EH là đường vuông góc ( EH vuông góc BC )

EC là đường xuyên 

-> EH < EC ( quan hệ đường xuyên đường vuông góc )

Mà E H = EA ( tam giác ABE=  tam giác HBE )

câu e) bn chỉ cần chứng minh 3 điểm này thuộc tia phân giác 

bài này mk làm rùi!!

56576879870

17 tháng 3 2020

nếu bạn ko thấy ảnh thì zô thống kê hỏi đáp của mình là thấy bài này nhá . ( cậu tìm câu nào có câu này r ấn zô xem nha )

hoặc link bài của mình nè

https://scontent-hkt1-1.xx.fbcdn.net/v/t1.15752-9/89947717_345887062999332_7304147707155709952_n.jpg?_nc_cat=110&_nc_sid=b96e70&_nc_ohc=Hj57duZ44dcAX91P2ra&_nc_ht=scontent-hkt1-1.xx&oh=7ea184f17776bd230198145c38f92aae&oe=5E95F1D5

Dễ vãi nồi

a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

\(\widehat{ABM}=\widehat{DBM}\)

Do đó:ΔBAM=ΔBDM

Suy ra:BA=BD

b: Xét ΔBDE vuông tại D và ΔBAC vuông tại A có

BD=BA

\(\widehat{DBE}\) chung

Do đó: ΔBDE=ΔBAC

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng