Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
BD là cạnh chung
Góc ABD = góc EBD (đường phân giác BD)
=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
a) Xét \(\Delta\)ABD và \(\Delta\)FBD có
BAD=BFD (=90 độ)
ABD=FBD (BD là tia pg của ABC)
BD là cạnh chung
Do đó \(\Delta\)ABD=\(\Delta\)FBD(chgn)
b)Ta có \(\Delta\)ABD=\(\Delta\)FBD(cmt)
\(\Rightarrow\)AB=FB(2 cạnh t/ứ)
\(\Rightarrow\Delta ABFcântạiB\)
Xét \(\Delta\)ABF cân tại B có : BD là pg ABC hay BD là pg ABF
\(\Rightarrow\)BD đồng thời là đường trung trực của đoạn thẳng À
c)Vì \(\Delta\) DFC vuông tại F
\(\Rightarrow\)cạnh huyền DC là cạnh lớn nhất của \(\Delta\) DFC
\(\Rightarrow\)DC>FD
Mà AD=FD (vì \(\Delta\)ABD=\(\Delta\)FBD)
Nên AD<DC
d) Xét \(\Delta\)ADE và \(\Delta\)FDC có
DAE=DFC(=90 độ)
AE=CF(gt)
AD=FD(cmt)
Do đó\(\Delta\)ADE=\(\Delta\)FDC(2 cạnh góc vuông)
\(\Rightarrow\)ADE=FDC(2 góc t./ứ)
Mà ADE+EDC=180 độ
CDF+EDC=180 độ
Hay EDF=180 độ
\(\Rightarrow\)E,D,F thẳng hàng
a)xét ΔABD và ΔFED có:
\(\widehat{BAD}=\widehat{BFD}=90^o\)
BD là cạnh chung
\(\widehat{ABD}=\widehat{FBD}\)(BD là phân giác của \(\widehat{ABF}\))
⇒ΔABD=ΔFED(c.huyền.g.nhọn)
b)gọi I là giao điểm của AF và BD
xét ΔABI và ΔFBI có:
BF=AB(ΔABD=ΔFED)
BI là cạnh chung
\(\widehat{ABI}=\widehat{FBI}\)(BD là phân giác của \(\widehat{ABF}\))
⇒ΔABI=ΔFBI(c-g-c)
⇒\(\widehat{BIA}=\widehat{BIF}\)(2 góc tương ứng)(1)
Mà \(\widehat{BIA}+\widehat{BIF}=180^o\)(2 góc kề bù)(2)
từ (1) và (2) ⇒\(\widehat{BIA}=\widehat{BIF}=\dfrac{180^o}{2}=90^o\)
vì ΔABI=ΔFBI⇒IA=IF
Do đó:BD là trung trực của AF(đ.p.cm)
c)xét ΔDCF có
DC là cạnh huyền
⇒DC>DF
Mà DF=AD
⇒DC>AD
d)Ta có:
AB=DF(ΔABD=ΔFED)
Mà AE=FC
⇒AB+AE=DF+FC
hay BE=DC
xét ΔBDC và ΔBDE có:
BE=DC(ch/m trên)
\(\widehat{EBD}=\widehat{CBD}\)(BD là phân giác của \(\widehat{EBC}\))
BD là cạnh chung
⇒ ΔBDC=ΔBDE(c-g-c)
⇒\(\widehat{BDE}=\widehat{BDC}\)(2 góc tương ứng)
Mà \(\widehat{BDA}=\widehat{BDF}\)(ΔABD=ΔFED)
⇒\(\widehat{BDE}-\widehat{BDA}=\widehat{BDC}-\widehat{BDF}\)
hay \(\widehat{ADE}=\widehat{FDC}\)(đ.p.cm)
ta có:\(\widehat{ADE}+\widehat{CDE}=180^o\)(2 góc kề bù)
Mà \(\widehat{ADE}=\widehat{FDC}\) ⇒\(\widehat{FDC}+\widehat{CDE}=180^o\)
hay E,D,F thẳng hàng(đ.p.cm)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Hình bạn tự vẽ nhé!!
a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
BD là cạnh chung
Góc ABD = góc EBD (đường phân giác BD)
=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)
b). Gọi I là giao điểm của BD và AE.
Xét tam giác ABI và tam giác EBI có:
AB=EB (tam giác ABD=tam giác EBD)
Góc ABI=góc EBI (đường phân giác BD)
BI là cạnh chung.
=> tam giác ABI=tam giác EBI (c.g.c)
=> AI=EI => I là trung điểm của AE. (1)
=> Góc BIA=góc BIE
Mà góc BIA+góc BIE=180 độ (hai góc kề bù)
=> góc BIA=góc BIE=90 độ.
=> BI vuông góc với AE (2).
Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AE
d). Xét tam giác ADF vuông tại A và tam giác EDC vuông tại E có:
AD=ED (tam giác ABD = tam giác EBD)
AF=CE (GT)
=> tam giác ADF=tam giác EDC (hai cạnh góc vuông)
=> Góc ADF = góc EDC
Chúc bạn học tốt!
Bài làm:
d) Từ các phần a,b,c có lẽ bn đã CM được:
\(\hept{\begin{cases}DE=AD\\FA=CE\end{cases}}\)
Xét trong tam giác DEC có: \(DE+EC>DC\) (bất đẳng thức trong tam giác)
Ta có: \(2\left(AD+AF\right)=AD+AD+AF+AF\)
\(=AD+AF+\left(AD+AF\right)\)
\(=AD+AF+\left(DE+EC\right)\)
\(>AD+AF+DC=AF+\left(AD+DC\right)\)
\(=AF+AC>FC\) (bất đẳng thức giữa 3 cạnh trong tam giác AFC)
=> \(2\left(AD+AF\right)>CF\)